Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Javier Arias is active.

Publication


Featured researches published by Francisco Javier Arias.


Mini-reviews in Medicinal Chemistry | 2004

Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria.

Tomás Girbés; Ferreras Jm; Francisco Javier Arias; Fiorenzo Stirpe

Ribosome-Inactivating Proteins (RIPs) are enzymes that trigger the catalytic inactivation of ribosomes and other substrates. They are present in a large number of plants and have been found also in fungi, algae and bacteria. RIPs are currently classified as type 1, those formed by a single polypeptide chain with the enzymatic activity, and type 2, those formed by 2 types of chains, i.e. A chains equivalent to a type 1 RIPs and B chains with lectin activity. Type 2 RIPs usually contain the formulae A-B, (A-B)2 and less frequent (A-B)4 and polymeric forms of type 2 RIPs lectins. RIPs are broadly distributed in plants, and are present also in fungi, bacteria, at least in one alga; recently RIP-type activity has been described in mammalian tissues. The highest number of RIPs has been found in Caryophyllaceae, Sambucaceae, Cucurbitaceae, Euphorbiaceae, Phytolaccaceae and Poaceae. However there are no systematic screening studies to allow generalisations about occurrence. The most known activity of RIPs is the translational inhibitory activity, which seems a consequence of a N-glycosidase on the 28 S rRNA of the eukaryotic ribosome that triggers the split of the A(4324) (or an equivalent base in other ribosomes), which is key for translation. This activity seems to be part of a general adenine polynucleotide glycosylase able to act on several substrates other than ribosomes, such as tRNA, mRNA, viral RNA and DNA. Other enzymatic activities found in RIPs are lipase, chitinase and superoxide dismutase. RIPs are phylogenetically related. In general RIPs from close families share good amino acid homologies. Type 1 RIPs and the A chains of type 2 RIPs from Magnoliopsida (dicotyledons) are closely related. RIPs from Liliopsida (monocotyledons) are at the same time closely related and distant from Magnoliopsida. Concerning the biological roles played by RIPs there are several hypotheses, but the current belief is that they could play significant roles in the antipathogenic (viruses and fungi), stress and senescence responses. In addition, roles as antifeedant and storage proteins have been also proposed. Future research will approach the potential biological roles played by RIPs and their use as toxic effectors in the construction of immunotoxins and conjugates for target therapy.


Small | 2011

Layer-by-Layer Assembly of Chitosan and Recombinant Biopolymers into Biomimetic Coatings with Multiple Stimuli-Responsive Properties

Rui R. Costa; Catarina A. Custódio; Francisco Javier Arias; José Carlos Rodríguez-Cabello; João F. Mano

In this work, biomimetic smart thin coatings using chitosan and a recombinant elastin-like recombinamer (ELR) containing the cell attachment sequence arginine-glycine-(aspartic acid) (RGD) are fabricated through a layer-by-layer approach. The synthetic polymer is characterized for its molecular mass and composition using mass spectroscopy and peptide sequencing. The adsorption of each polymeric layer is followed in situ at room temperature and pH 5.5 using a quartz-crystal microbalance with dissipation monitoring, showing that both polymers can be successfully combined to conceive nanostructured, multilayered coatings. The smart properties of the coatings are tested for their wettability by contact angle (CA) measurements as a function of external stimuli, namely temperature, pH, and ionic strength. Wettability transitions are observed from a moderate hydrophobic surface (CAs approximately from 62° to 71°) to an extremely wettable one (CA considered as 0°) as the temperature, pH, and ionic strength are raised above 50 °C, 11, and 1.25 M, respectively. Atomic force microscopy is performed at pH 7.4 and pH 11 to assess the coating topography. In the latter, the results reveal the formation of large and compact structures upon the aggregation of ELRs at the surface, which increase water affinity. Cell adhesion tests are conducted using a SaOs-2 cell line. Enhanced cell adhesion is observed in the coatings, as compared to a coating with a chitosan-ending film and a scrambled arginine-(aspartic acid)-glycine (RDG) biopolymer. The results suggest that such films could be used in the future as smart biomimetic coatings of biomaterials for different biomedical applications, including those in tissue engineering or in controlled delivery systems.


Current Eye Research | 2009

Genetically Engineered Elastin-Like Polymer as a Substratum to Culture Cells from the Ocular Surface

Hernán Martínez-Osorio; Mónica Juárez-Campo; Yolanda Diebold; Alessandra Girotti; Matilde Alonso; Francisco Javier Arias; José Carlos Rodríguez-Cabello; Carmen García-Vázquez; Margarita Calonge

Purpose: To investigate epithelial cell adhesion and proliferation on a newly developed elastin-like polymer (ELP) that mimics the functional characteristics of extracellular matrices. Materials and Methods: A genetically engineered ELP with cell attachment sequences was adsorbed onto glass coverslips as 1, 2, or 3 molecular films. Conjunctival epithelial cells from a human cell line and human skin fibroblast cells (as controls) were plated onto coverslips with three different substrata: plain glass, Thermanox®, and ELP-coated. Cells (104) were plated after EDTA- or trypsin-based detachment. To test adhesion, epithelial and fibroblast cells were incubated for 4 hr, stained with hematoxylin, and counted. To study proliferation, Ki-67-positive epithelial cells were counted after 1, 3, and 5 days in culture. Immunostaining for conjunctival and adhesion markers was performed. Results: Epithelial cell, but not fibroblast, adhesion on ELP was significantly enhanced compared to that of control substrata. Epithelial cells detached with EDTA alone adhered significantly better than those detached with trypsin. By day 5, epithelial cell proliferation on ELP was significantly greater than that on plain glass. Epithelial cells grown on ELP expressed conjunctival and adhesion markers. Conclusions: The recombinant ELP resembling the ocular surface extracellular matrix was a suitable substratum to sustain epithelial cell attachment and growth. This type of polymer may be suitable for tissue engineering to restore vision by reconstructing the ocular surface.


Biotechnology Journal | 2011

Elastin-like recombinamers: Biosynthetic strategies and biotechnological applications

Alessandra Girotti; Alicia Fernández-Colino; Isabel M. López; José Carlos Rodríguez-Cabello; Francisco Javier Arias

The past few decades have witnessed the development of novel naturally inspired biomimetic materials, such as polysaccharides and proteins. Likewise, the seemingly exponential evolution of genetic‐engineering techniques and modern biotechnology has led to the emergence of advanced protein‐based materials with multifunctional properties. This approach allows extraordinary control over the architecture of the polymer, and therefore, monodispersity, controlled physicochemical properties, and high sequence complexity that would otherwise be impossible to attain. Elastin‐like recombinamers (ELRs) are emerging as some of the most prolific of these protein‐based biopolymers. Indeed, their inherent properties, such as biocompatibility, smart nature, and mechanical qualities, make these recombinant polymers suitable for use in numerous biomedical and nanotechnology applications, such as tissue engineering, “smart” nanodevices, drug delivery, and protein purification. Herein, we present recent progress in the biotechnological applications of ELRs and the most important genetic engineering‐based strategies used in their biosynthesis.


Nanomedicine: Nanotechnology, Biology and Medicine | 2006

Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers

J. Carlos Rodríguez-Cabello; Susana Prieto; Francisco Javier Arias; Javier Reguera; Artur Ribeiro

Today, the development of advanced biomaterials is still lacking an appropriate tailored engineering approach. Most of the biomaterials currently used have their origin in materials developed for other technological applications. This lack of adequate biomaterial design is probably due to the peculiar environment where those materials must operate. On the one hand, this environment is dominated by the immune rejection system. On the other hand, the functionality of natural biomolecules is based on complex topological physical-chemical function distributions at the nanometer level. This review presents arguments concerning the role of biotechnology and nanotechnology in the future development of new advanced biomaterials and the potential of these biomaterials as a way to achieve highly biofunctional and truly biocompatible biomaterials for hot areas, such as regenerative medicine and controlled release. Recombinant protein-polymers will be presented as an example of candidates for this new paradigm in biomaterial design and production.


Planta | 1992

Isolation and partial characterization of a new ribosome-inactivating protein from Petrocoptis glaucifolia (Lag.) Boiss.

Francisco Javier Arias; M.A. Rojo; Ferreras Jm; Rosario Iglesias; Raúl Muñoz; Rocher A; Enrique Méndez; Luigi Barbieri; Tomás Girbés

Petrocoptis glaucifolia, a paleoendemic member of the Caryophyllaceae from the North of Spain, was found to contain at least five proteins that inhibit protein synthesis in a rabbit reticulocyte lysate. One of them, for which the name petroglaucin is proposed, was purified to apparent electrophoretic homogeneity by chromatography through S-Sepharose Fast Flow, Sephadex G-75 and CM-Sepharose Fast Flow. The apparent Mr of the preparation was 27500. This protein does not contain appreciable glycan chains and displays 45.8% of NH2-terminal amino-acid sequence homology with some ribosome-inactivating proteins from Saponaria officinalis, another member of the Caryophyllaceae. Petroglaucin shows the following functional properties: (i) it strongly inhibits the rabbit-reticulocyte-lysate system and Vicia sativa cell-free extracts, both coded by endogenous messengers, and also inhibits poly(U)-directed polyphenylalanine synthesis by Vicia sativa cell-free extracts and purified rat-liver ribosomes; (ii) it shows much less inhibitory capacity in wheat-germ, Cucumis sativus and rat-liver cell-free systems coded by endogenous messengers; (iii) the inhibitory effects on purified rat-liver ribosomes were irreversible; (vi) it promotes the release of adenine from purified rat-liver ribosomes. The total activity of this translational inhibitor has been found to increase up to 11-fold during its purification, indicating that some regulatory factor that normally blocks the translational inhibitory activity of the ribosome-inactivating protein in crude extracts of the plant is removed during purification.


Soft Matter | 2010

Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer

Laura Martín; Francisco Javier Arias; Matilde Alonso; Carmen García-Arévalo; José Carlos Rodríguez-Cabello

We report a simple, fast, water-based method to obtain micropatterned biocompatible gels from a recently described family of elastin-like amphiphilic multiblock copolymers that combines reversible thermogelling properties under mild, physiological conditions with a means of replica molding.


AMB Express | 2013

High level expression and facile purification of recombinant silk-elastin-like polymers in auto induction shake flask cultures

Raul Machado; João Azevedo-Silva; Cristina Correia; Tony Collins; Francisco Javier Arias; José Carlos Rodríguez-Cabello; Margarida Casal

Silk-elastin-like polymers (SELPs) are protein-based polymers composed of repetitive amino acid sequence motifs found in silk fibroin (GAGAGS) and mammalian elastin (VPGVG). These polymers are of much interest, both from a fundamental and applied point of view, finding potential application in biomedicine, nanotechnology and as materials. The successful employment of such polymers in such diverse fields, however, requires the ready availability of a variety of different forms with novel enhanced properties and which can be simply prepared in large quantities on an industrial scale. In an attempt to create new polymer designs with improved properties and applicability, we have developed four novel SELPs wherein the elastomer forming sequence poly(VPGVG) is replaced with a plastic-like forming sequence, poly(VPAVG), and combined in varying proportions with the silk motif. Furthermore, we optimised a simplified production procedure for these, making use of an autoinduction medium to reduce process intervention and with the production level obtained being 6-fold higher than previously reported for other SELPs, with volumetric productivities above 150 mg/L. Finally, we took advantage of the known enhanced stability of these polymers in developing an abridged, non-chromatographic downstream processing and purification protocol. A simple acid treatment allowed for cell disruption and the obtention of relative pure SELP in one-step, with ammonium sulphate precipitation being subsequently used to enable improved purity. These simplified production and purification procedures improve process efficiency and reduce costs in the preparation of these novel polymers and enhances their potential for application.


Advanced Drug Delivery Reviews | 2016

Elastin-like polypeptides in drug delivery ☆

José Carlos Rodríguez-Cabello; Francisco Javier Arias; Matilde Alonso Rodrigo; Alessandra Girotti

The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules.

Rui R. Costa; Catarina A. Custódio; Francisco Javier Arias; José Carlos Rodríguez-Cabello; João F. Mano

UNLABELLED Multilayer capsules conceived at the nano- and microscales are receiving increasing interest due to their potential role as carriers of biomolecules for drug delivery and tissue engineering. Herein we report the construction of microcapsules by the sequential adsorption of chitosan and a biomimetic elastin-like recombinamer into nanostructured layers on inorganic microparticle templates. The release profile of bovine serum albumin, which was studied at 25 and 37 °C, shows higher retention and Fickian diffusion at physiological temperature. The self-assembled multilayers act as a barrier and allowed for sustained release over 14 days. The capsules studied are non-cytotoxic towards L929 cells, thereby suggesting multiple applications in the fields of biotechnology and bioengineering, where high control of the delivery of therapeutics and growth/differentiation factors is required. FROM THE CLINICAL EDITOR In this paper, the construction of microcapsules by sequential adsorption of chitosan and a biomimetic, elastin-like recombinamer into nanostructured layers on inorganic microparticle templates is reported. The layers demonstrated sustained drug release over 14 days. These microcapsules are non-cytotoxic toward L929 cells, suggesting multiple applications where high control of drug or growth factor delivery is required.

Collaboration


Dive into the Francisco Javier Arias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomás Girbés

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferreras Jm

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar

Matilde Alonso

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.A. Rojo

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raúl Muñoz

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge