Francisco Javier de la Mata
University of Alcalá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Javier de la Mata.
AIDS | 2013
Enrique Vacas Córdoba; Eduardo Arnaiz; Miguel Relloso; Carlos Sánchez-Torres; Federico García; Lucía Pérez-Álvarez; Rafael Gómez; Francisco Javier de la Mata; Marjorie Pion; Ma Ángeles Muñoz-Fernández
Objectives:For the last 20 years, the idea of alternative prevention strategies based on the use of topical vaginally products to inhibit HIV-1 infection in women has been established. The concept of a ‘microbicide’ product has been born out of the unavailability of a vaccine against HIV-1 and the problems of women in negotiating the use of preventive prophylaxis by their partners, especially in developing countries. Design:We have developed and evaluated polyanionic carbosilane dendrimers G3-S16 and G2-NF16 with sulphated and naphthylsulphonated end groups as nonspecific microbicides. Methods:Cellular in-vitro or in-vivo models were used to evaluate the safety, biocompatibility and anti-HIV ability of two polyanionic carbosilane dendrimers. Results:Both dendrimers showed high biosafety in human epithelial cell lines derived from uterus and vagina and in primary blood human cells (PBMC). These dendrimers not only have a partial capacity to block the entry of different X4 and R5 HIV-1 isolates inside epithelial cells but protect the epithelial monolayer from cell disruption and also reduce HIV-1 infection of activated PBMC. Additionally, treatment of epithelial cells with G3-S16 or G2-NF16 dendrimers did not produce changes in proinflammatory cytokines profile, in proliferation of PBMC, on microbiota or sperm survival. Finally, no irritation or vaginal lesions were detected in female CD1(ICR) mice after dendrimers vaginal administration. Conclusion:These interesting results suggest that G3-S16 or G2-NF16 could be effective to inhibit HIV infection and transmission within genital mucosa as well as the spread of HIV transmission to human PBMC.
International Journal of Pharmaceutics | 2015
Cristina Fornaguera; Santiago Grijalvo; Marta Galán; Elena Fuentes-Paniagua; Francisco Javier de la Mata; Rafael Gómez; Ramon Eritja; Gabriela Calderó; Conxita Solans
The development of novel and efficient delivery systems is often the limiting step in fields such as antisense therapies. In this context, poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles have been obtained by a versatile and simple technology based on nano-emulsion templating and low-energy emulsification methods, performed in mild conditions, providing good size control. O/W polymeric nano-emulsions were prepared by the phase inversion composition method at 25°C using the aqueous solution/polysorbate80/[4 wt% PLGA in ethyl acetate] system. Nano-emulsions formed at oil-to-surfactant (O/S) ratios between 10/90-90/10 and aqueous contents above 70 wt%. Nano-emulsion with 90 wt% of aqueous solution and O/S ratio of 70/30 was chosen for further studies, since they showed the appropriate characteristics to be used as nanoparticle template: hydrodynamic radii lower than 50 nm and enough kinetic stability. Nanoparticles, prepared from nano-emulsions by solvent evaporation, showed spherical shape, sizes about 40 nm, negative surface charges and high stability. The as-prepared nanoparticles were functionalized with carbosilane cationic dendrons through a carbodiimide-mediated reaction achieving positively charged surfaces. Antisense oligonucleotides were electrostatically attached to nanoparticles surface to perform gene-silencing studies. These complexes were non-haemolytic and non-cytotoxic at the concentrations required. The ability of the complexes to impart cellular uptake was also promising. Therefore, these novel nanoparticulate complexes might be considered as potential non-viral carriers in antisense therapy.
Nanomedicine: Nanotechnology, Biology and Medicine | 2014
Daniel Sepúlveda-Crespo; Raquel Lorente; Manuel Leal; Rafael Gómez; Francisco Javier de la Mata; José Luis Jiménez; Ma Ángeles Muñoz-Fernández
UNLABELLED Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. FROM THE CLINICAL EDITOR This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Daniel Sepúlveda-Crespo; Rafael Gómez; Francisco Javier de la Mata; José Luis Jiménez; Ma Ángeles Muñoz-Fernández
UNLABELLED Polyanionic carbosilane dendrimers (PCDs) are potential candidates for the development of new microbicides for the prevention of HIV transmission. Tenofovir (TFV), which has dual antiviral activity (anti-HIV/HSV-2), and maraviroc (MRV) are the most studied antiretrovirals as microbicides. Here, we introduce developments in the design of innovative dendrimer-based microbicides. We also review and discuss the combination of various PCDs with TFV and/or MRV for their anti-HIV-1 activity and synergistic combinatory potential. Well-defined combinations blocking HIV-1 infection in early steps of HIV-1 replication provide greater efficacy than monotherapy, as reflected by the decrease in concentration and increase in HIV-1 inhibition. These combinations are characterized by lower doses, which minimize toxic side-effects and the emergence of multi-drug resistant mutants. The above facts suggest that the combination of first- and second-generation PCDs with TFV and/or MRV represents a promising candidate microbicide for preventing HIV-1 sexual transmission and simultaneously suppressing HSV-2. FROM THE CLINICAL EDITOR HIV infection remains a significant and unresolved problem for humankind, despite the development of combination antiretroviral therapy. It has been found that polyanionic carbosilane dendrimers have efficacy in preventing HIV transmission. In this comprehensive review article, the authors discuss the current status and latest development of the use of dendrimers in combination with other antiretroviral drugs as microbicides, which should stimulate others into further research in the fight against HIV.
International Journal of Pharmaceutics | 2015
Maksim Ionov; Joanna Lazniewska; Volha Dzmitruk; Inessa Halets; Svetlana Loznikova; D. S. Novopashina; Evgeny K. Apartsin; Olga Krasheninina; Alya G. Venyaminova; Katarzyna Milowska; Olga Nowacka; Rafael Gomez-Ramirez; Francisco Javier de la Mata; Jean-Pierre Majoral; Dzmitry Shcharbin; Maria Bryszewska
This paper examines a perspective on the use of newly engineered nanomaterials as effective and safe carriers of genes for the therapy of cancer. Three different groups of cationic dendrimers (PAMAM, phosphorus and carbosilane) were complexed with anticancer siRNA and their biophysical properties of the dendriplexes analyzed. The potential of the dendrimers as nanocarriers for anticancer siBcl-xl, siBcl-2, siMcl-1 siRNAs and a siScrambled sequence was explored. Dendrimer/siRNA complexes were characterized by methods including fluorescence, zeta potential, dynamic light scattering, circular dichroism, gel electrophoresis and transmission electron microscopy. Some of the experiments were done with heparin to check if siRNA can be easily disassociated from the complexes, and whether released siRNA maintains its structure after interaction with the dendrimer. The results indicate that siRNAs form complexes with all the dendrimers tested. Oligoribonucleotide duplexes can be released from dendriplexes after heparin treatment and the structure of siRNA is maintained in the case of PAMAM or carbosilane dendrimers. The dendrimers were also effective in protecting siRNA from RNase A activity. The selection of the best siRNA carrier will be made based on cell culture studies (Part B).
Colloids and Surfaces B: Biointerfaces | 2013
Maksim Ionov; Karol Ciepluch; Barbara Klajnert; Sława Glińska; Rafael Gomez-Ramirez; Francisco Javier de la Mata; María Ángeles Muñoz-Fernández; Maria Bryszewska
Dendrimers have been proposed as new carriers for selected HIV-1 peptides. This paper reports on the complexation behaviour of the three HIV-derived-peptides: Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH with second generation cationic carbosilane dendrimers (CBD) branched with carbonsilicon bonds (CBD-CS) or oxygensilicon bonds (CBD-OS). Studies on the formation of complexes between HIV peptides and CBDs by fluorescence polarization, zeta-potential, electrophoresis and transmission electron microscopy have shown that both studied dendrimers form complexes with HIV peptides. At a molar ratio of (2.5-3):1 (dendrimer:peptide), the complexes formed were in the size range of 180-275 nm and with significant positive surface charge. The results suggest that interactions between dendrimers and HIV peptides have electrostatic nature due to the negative charge of peptides backbone and positive charge of dendrimer functional groups. Dendriplex stability depended on the type of studied dendrimers. Time of peptides release from the complexes ranged from 1 (CBD-OS) to ~36 (CBD-CS)h. Basing on the obtained results, we propose that the water-soluble cationic carbosilane dendrimers can be considered for delivery of HIV peptides to dendritic cells.
Biochimica et Biophysica Acta | 2012
Maksim Ionov; Zuzana Garaiova; Iveta Waczulíková; Dominika Wrobel; Elzbieta Pedziwiatr-Werbicka; Rafael Gomez-Ramirez; Francisco Javier de la Mata; Barbara Klajnert; Tibor Hianik; Maria Bryszewska
One of the major limitations in gene therapy is an inability of naked siRNA to passively diffuse through negatively charged cell membranes. Therefore, the siRNA transport into a cell requires efficient carriers. In this work we analyzed the charge-dependent interaction of the complexes of cationic carbosilane dendrimers (CBD) and anti-HIV siRNA (dendriplexes) with the model membranes - large unilamellar vesicles (LUV). We used the second generation of branched with CBD carbon-silicon bonds (CBD-CS) which are water-stable and that of oxygen-silicon bonds (CBD-OS) which are slowly hydrolyzed in aqueous solutions. The LUVs were composed of zwitterionic dimyristoylphosphatidylcholine (DMPC), negatively charged dipalmitoylphosphatidylglycerol (DPPG) and their mixture (DMPC/DPPG, molar ratio 7:3). The interaction of dendriplexes with LUVs affected both zeta potential and size of the vesicles. The changes of these values were larger for the negatively charged LUV. CBD-CS resulted in the decrease of zeta potential values to more negative ones, whereas an opposite effect took place for CBD-OS suggesting a different kind of interaction between LUVs and the dendriplexes. The results indicate that both CBD-CS and CBD-OS can be used for transport of siRNA into the cells. However, CBD-CS are preferred due to a better stability in water and improved bioavailability of siRNA on their surface.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Daniel Sepúlveda-Crespo; Javier Sánchez-Rodríguez; María Jesús Serramía; Rafael Gómez; Francisco Javier de la Mata; José Luis Jiménez; Ma Ángeles Muñoz-Fernández
AIM To research the synergistic activity by triple combinations of carbosilane dendrimers with tenofovir and maraviroc as topical microbicide. METHODS Cytotoxicity, anti-HIV-1 activity, vaginal irritation and histological analysis of triple combinations were determined. Analysis of combined effects and the median effective concentration were performed using CalcuSyn software. RESULTS Combinations showed a greater broad-spectrum anti-HIV-1 activity than the single-drug, and preserved this activity in acid environment or seminal fluid. The strongest combinations were G2-STE16/G2-S24P/tenofovir, G2-STE16/G2-S16/maraviroc and G2-STE16/tenofovir/maraviroc at 2:2:1, 10:10:1 10:5:1 ratios, respectively. They demonstrated strong synergistic activity profile due to the weighted average combination indices varied between 0.06 and 0.38. No irritation was detected in female BALB/c mice. CONCLUSION The three-drug combination increases their antiviral potency and act synergistically as potential microbicide.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Daniel Sepúlveda-Crespo; María Jesús Serramía; Andrew M. Tager; Vladimir Vrbanac; Rafael Gómez; Francisco Javier de la Mata; José Luis Jiménez; Ma Ángeles Muñoz-Fernández
UNLABELLED The development of a safe, effective, and low-priced topical microbicide to prevent HIV-1 sexual transmission is urgently needed. The emerging field of nanotechnology plays an important role in addressing this challenge. We demonstrate that topical vaginal administration of 3% G2-S16 prevents HIV-1JR-CSF transmission in humanized (h)-BLT mice in 84% with no presence of HIV-1 RNA and vaginal lesions. Second-generation polyanionic carbosilane dendrimer G2-S16 with silica core and 16 sulfonate end-groups exerts anti-HIV-1 activity at an early stage of viral replication, blocking the gp120/CD4 interaction, acting on the virus, and inhibiting the cell-to-cell HIV-1 transmission, confirming its multifactorial and non-specific ability. This study represents the first demonstration that transmission of HIV-1 can be efficiently blocked by vaginally applied G2-S16 in h-BLT mice. These findings provide a step forward in the development of G2-S16-based vaginal microbicides to prevent vaginal HIV-1 transmission in humans. FROM THE CLINICAL EDITOR HIV infections remain a significant problem worldwide and the major route of transmission is through sexual activity. In this article, the authors developed an antiviral agent containing polyanionic carbosilane dendrimer with silica core and 16 sulfonate end-groups. When applied vaginally, this was shown to exert anti-HIV protection. These positive findings may offer hope in the fight against the spread of HIV epidemic.
International Journal of Nanomedicine | 2014
Enrique Vacas-Córdoba; Marta Galán; Francisco Javier de la Mata; Rafael Gómez; Marjorie Pion; M. Ángeles Muñoz-Fernández
Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV)-1 infection rates. Up until now, antiretrovirals (ARVs) have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches to develop novel antiviral agents. Thereby, new nanosystems, such as carbosilane dendrimers, have been shown to be safe and effective compounds against HIV with great potential as topical microbicides. In addition, because most of the attempts to develop effective topical microbicides were unsuccessful, combinatorial strategies could be a valid approach when designing new microbicides. We evaluated various combinations of anionic carbosilane dendrimers with sulfated (G3-S16) and naphthyl sulfonated (G2-NF16) ended groups with different ARVs against HIV-1 infection. The G3-S16 and G2-NF16 dendrimers showed a synergistic or additive activity profile with zidovudine, efavirenz, and tenofovir in the majority of the combinations tested against the X4 and R5 tropic HIV-1 in cell lines, as well as in human primary cells. Therefore, the combination of ARVs and polyanionic carbosilane dendrimers enhances the antiviral potency of the individual compounds, and our findings support further clinical research on combinational approaches as potential microbicides to block the sexual transmission of HIV-1.