Francisco Ludueña-Almeida
National University of Cordoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Ludueña-Almeida.
Memorias Do Instituto Oswaldo Cruz | 2011
Marina Stein; Francisco Ludueña-Almeida; Juana Alicia Willener; Walter Ricardo Almirón
To classify mosquito species based on common features of their habitats, samples were obtained fortnightly between June 2001-October 2003 in the subtropical province of Chaco, Argentina. Data on the type of larval habitat, nature of the habitat (artificial or natural), size, depth, location related to sunlight, distance to the neighbouring houses, type of substrate, organic material, vegetation and algae type and their presence were collected. Data on the permanence, temperature, pH, turbidity, colour, odour and movement of the larval habitats water were also collected. From the cluster analysis, three groups of species associated by their degree of habitat similarity were obtained and are listed below. Group 1 consisted of Aedes aegypti. Group 2 consisted of Culex imitator, Culex davisi, Wyeomyia muehlensi and Toxorhynchites haemorrhoidalis separatus. Within group 3, two subgroups are distinguished: A (Psorophora ferox, Psorophora cyanescens, Psorophora varinervis, Psorophora confinnis, Psorophora cingulata, Ochlerotatus hastatus-oligopistus, Ochlerotatus serratus, Ochlerotatus scapularis, Culex intrincatus, Culex quinquefasciatus, Culex pilosus, Ochlerotatus albifasciatus, Culex bidens) and B (Culex maxi, Culex eduardoi, Culex chidesteri, Uranotaenia lowii, Uranotaenia pulcherrima, Anopheles neomaculipalpus, Anopheles triannulatus, Anopheles albitarsis, Uranotaenia apicalis, Mansonia humeralis and Aedeomyia squamipennis). Principal component analysis indicates that the size of the larval habitats and the presence of aquatic vegetation are the main characteristics that explain the variation among different species. In contrast, water permanence is second in importance. Water temperature, pH and the type of larval habitat are less important in explaining the clustering of species.
Revista De Saude Publica | 2012
Marta Grech; Andrés Visintin; Magdalena Laurito; Elizabet Lilia Estallo; Pablo Lorenzo; Irene Roccia; Maximiliano Korin; Facundo Goya; Francisco Ludueña-Almeida; Walter Ricardo Almirón
Relata-se a presenca de Aedes aegypti ao sul de seu limite atual de distribuicao na Argentina, na cidade de Neuquen, provincia de Neuquen. Ovitrampas foram instaladas de dezembro/2009 a abril/2010. A distribuicao geografica de Culex eduardoi, Psorophora ciliata e Ps. cingulata aumenta, incluindo novos registros para duas provincias.The presence of Aedes aegypti is reported beyond its current limit of distribution in Argentina, in the city of Neuquén, Neuquén Province. Ovitraps were placed to collect Ae. aegypti eggs between December 2009 and April 2010. The geographical distribution of Culex eduardoi, Psorophora ciliata and Ps. cingulata is extended with new records from two provinces.
Journal of Vector Ecology | 2010
Marta Grech; Francisco Ludueña-Almeida; Walter Ricardo Almirón
ABSTRACT: Differences in biological features of immature and adult Aedes aegypti, as well as variability in vector competence, seem consistent with the existence of genetic variation among subpopulations and adaptation to local conditions. This work aims to compare the bionomics of four Ae. aegypti subpopulations derived from different geographical regions reared under temperate conditions. Life statistics of three Ae. aegypti subpopulations from the provinces of Córdoba, Salta, and Misiones were studied based on horizontal life tables. The Rockefeller strain was used as a control. The development time required to complete the larva and pupa stages varied from 6.91 to 7.95 and 1.87 to 2.41 days, respectively. Significant differences were found in mean larval development time between the Córdoba and Orán subpopulations. The larva-pupa development time was similar in all the subpopulations. However, survival values varied significantly between the Orán and San Javier subpopulations. The proportion of emergent males did not differ from females within each subpopulation nor among them. Adult longevity was similar among the subpopulations. The average number of eggs laid by each female was significantly different. The Rockefeller strain laid a significantly greater number of eggs (463.99 eggs/female) than the rest of the subpopulations. Moreover, differences in the demographic growth parameter Ro were detected among the four subpopulations. The differences obtained in larval development time, larva-pupa survival values, and net reproductive rates among the subpopulations might reflect underlying genetic differences as a result of colonization from different regions that probably involve adaptations to local conditions.
Acta Tropica | 2014
Elizabet Lilia Estallo; A.E. Carbajo; M.G. Grech; M. Frías-Céspedes; L. López; Mario Lanfri; Francisco Ludueña-Almeida; Walter Ricardo Almirón
During 2009 the biggest dengue epidemic to date occurred in Argentina, affecting almost half the country. We studied the spatio-temporal dynamics of the outbreak in the second most populated city of the country, Córdoba city. Confirmed cases and the results of an Aedes aegypti monitoring during the outbreak were geolocated. The imported cases began in January, and the autochthonous in March. Thirty-three percent of the 130 confirmed cases were imported, and occurred mainly at the center of the city. The autochthonous cases were more frequent in the outskirts, specially in the NE and SE. Aedes aegypti infestation showed no difference between neighborhoods with or without autochthonous cases, neither between neighborhoods with autochthonous vs. imported cases. The neighborhoods with imported cases presented higher population densities. The majority of autochthonous cases occurred at ages between 25 and 44 years old. Cases formed a spatio-temporal cluster of up to 20 days and 12km. According to a mathematical model that estimates the required number of days needed for transmission according to daily temperature, the number of cases begun to fall when more than 15.5 days were needed. This may be a coarse estimation of mean mosquito survival in the area, provided that the study area is close to the global distribution limit of the vector, and that cases prevalence was very low.
International Journal of Remote Sensing | 2012
Elizabet Lilia Estallo; Francisco Ludueña-Almeida; Andrés Visintin; Carlos Marcelo Scavuzzo; Mario Lamfri; María Virginia Introini; Mario Zaidenberg; Walter Ricardo Almirón
The application of remotely sensed data to public health has increased in Argentina in the past few years, especially to study vector-borne viral diseases such as dengue. The normalized difference vegetation index (NDVI) has been widely used for remote sensing of vegetation as well as the brightness temperature (BT) for many years. Another environmental variable obtained from satellites is the normalized difference water index (NDWI) for remote sensing of the status of the vegetation liquid water from space. The aim of the present article was to test the effectiveness of NDWI together with other satellite and meteorological data to develop two forecasting models, namely the SATMET (satellite and meteorological variables) model and the SAT (satellite environmental variables) model. The models were developed and validated by dividing the data file into two sets: the data between January 2001 and April 2004 were used to construct the models and the data between May 2004 and May 2005 were used to validate them. The regression analysis for the SATMET and SAT models showed an adjusted R 2 of 0.82 and 0.79, respectively. To validate the models, a correlation between the estimates and the observations was obtained for both the SATMET model (r = 0.57) and the SAT model (r = 0.64). Both models showed the same root mean square error (RMSE) of 0.04 and, therefore, the same forecasting power. For this reason, these models may have applications as decision support tools in assisting public health authorities in the control of Aedes aegypti and risk management planning programmes.
PLOS ONE | 2015
Elizabet Lilia Estallo; Francisco Ludueña-Almeida; María Virginia Introini; Mario Zaidenberg; Walter Ricardo Almirón
This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance.
Vector-borne and Zoonotic Diseases | 2011
Elizabet Lilia Estallo; Francisco Ludueña-Almeida; Andrés Visintin; Carlos Marcelo Scavuzzo; María Virginia Introini; Mario Zaidenberg; Walter Ricardo Almirón
Dengue has affected the north provinces of Argentina, mainly Salta province. The 2009 outbreak, with 5 deaths and >27,000 infected, was the most important, and the first to extend into the central area of the country. This article includes research on seasonal Aedes aegypti abundance variation in Orán City (Salta province), and determination of the date of mosquito population increase and an estimation of the date of maximum rate of increase as well as the intrinsic rate of natural increase (r), to detect the optimal time to apply vector control measures. Between September 2005 and March 2007, ovitraps were randomly distributed in the city to collect Ae. aegypti eggs. The variation observed in the number of collected eggs was described by fitting a third-degree polynomial by the least square method, allowing to determine the time when population increase began (week 1), after the temperate and dry season. Eggs were collected throughout the year, with the highest variation in abundance during the warm and rainy season, and the maximum value registered in February 2007. The rate of increase of the number of eggs laid per week peaked between weeks 9 and 10 after the beginning of the population increase (week 1). Week 1 depends on temperature, it occurs after getting over the thermal threshold and the needed accumulation of 160 degree-day is reached. Consequently, week 1 changes depending on temperature. Peak abundance of eggs during 2005-2006 was recorded on week 15 (after week 1); during 2006-2007, the peak was observed on week 22. Estimation of the intrinsic rate of natural increase (r) of Ae. aegypti is useful not only to determine optimal time to apply vector control measures with better cost-benefit, but also to add an insecticide control strategy against the vector to diminish the possibility of resistance.
Acta Tropica | 2015
Marta G. Grech; Paolo D. Sartor; Walter Ricardo Almirón; Francisco Ludueña-Almeida
We investigated how ambient temperature under fluctuating conditions affects the larval-pupal immature traits of Aedes aegypti and Culex quinquefasciatus mosquitoes from Córdoba city, Argentina, and established each species development threshold and physiological time. Based on life tables, three cohorts of each mosquito species were reared in the laboratory under small fluctuating temperatures conditions of 15.2±1.7°C, 17.9±1.6°C, 21.6±0.7°C and 25.3±0.4°C for Ae. aegypti, and 16.6±1.7°C, 18.7±1.7°C and 25.2±0.3°C for Cx. quinquefasciatus. Immature development time and survival values, and also thermal development threshold and physiological time were estimated. Development times of all larval and pupal stages of Ae. aegypti and Cx. quinquefasciatus were significantly affected by the rearing temperatures, decreasing when temperature increased. Mean Ae. aegypti total (larva+pupa) development time ranged from 21.9 to 8.6 days, at 15.2 and 25.3°C, whereas, for Cx. quinquefasciatus varied between 23.5 to 9.2 days at 16.6 and 25.2°C, respectively. Larval and pupal survival of both species was affected by different rearing temperatures, increasing in general as temperature increased. For Ae. aegypti the total immature survival ranged from 26% at 15.2°C to 92% at 21.6°C; however, temperature did not have significant effect on this variable. The total immature survival of Cx. quinquefasciatus was significantly and positively affected by temperatures, ranging from 32 to 88%, at 16.6 and 25.2°C. The temperature development threshold and the physiological time estimated for Ae. aegypti and Cx. quinquefasciatus were 11.11°C and 93.74 degree-days, and 10.96°C and 136.87 degree-days, respectively. The results of the present study showed that temperature significantly affects the larval-pupal immature traits of these mosquito species of sanitary importance, from the central region of Argentina. All the parameters recorded are useful for the development of mosquito management models.
Revista Da Sociedade Brasileira De Medicina Tropical | 2013
Gonzalo Batallán; Romina Torre; Fernando G. Flores; Brenda Konigheim; Francisco Ludueña-Almeida; Carlos E. Tonn; Marta Silvia Contigiani; Walter Ricardo Almirón
INTRODUCTION The aim of the present study was to analyze the larvicidal activity of different crude extracts of Larrea cuneifolia and its most abundant lignan, nordihydroguaiaretic acid (NDGA), against Culex quinquefasciatus. METHODS Chloroform, methanol, and aqueous extracts from L. cuneifolia and NDGA were tested against larvae of Cx. quinquefasciatus under laboratory conditions. RESULTS The chloroform extract showed the highest larvicidal effect, with an estimated LC50 of 0.062 mg/ml. NDGA also demonstrated significant larvicidal activity with an estimated LC50 of 0.092 mg/ml. CONCLUSIONS These results indicate that the chloroform extract of L. cuneifolia and NDGA are promising insecticides of botanical origin that could be useful for controlling Cx. quinquefasciatus.
PLOS ONE | 2013
Elizabet Lilia Estallo; Guillermo Más; Carolina Vergara-Cid; Mario Lanfri; Francisco Ludueña-Almeida; Carlos Marcelo Scavuzzo; María Virginia Introini; Mario Zaidenberg; Walter Ricardo Almirón
Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health Ministry to focus resources more effectively.