Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco M. Salzano is active.

Publication


Featured researches published by Francisco M. Salzano.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Statistical evaluation of alternative models of human evolution

Nelson Jurandi Rosa Fagundes; Nicolas Ray; Mark A. Beaumont; Samuel Neuenschwander; Francisco M. Salzano; Sandro L. Bonatto; Laurent Excoffier

An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species ≈141 thousand years ago (Kya), an exit out-of-Africa ≈51 Kya, and a recent colonization of the Americas ≈10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.


Nature | 2012

Reconstructing Native American population history.

David Reich; Nick Patterson; Desmond D. Campbell; Arti Tandon; Stéphane Mazières; Nicolas Ray; María Victoria Parra; Winston Rojas; Constanza Duque; Natalia Mesa; Luis F. García; Omar Triana; Silvia Blair; Amanda Maestre; Juan C. Dib; Claudio M. Bravi; Graciela Bailliet; Daniel Corach; Tábita Hünemeier; Maria-Cátira Bortolini; Francisco M. Salzano; Maria Luiza Petzl-Erler; Victor Acuña-Alonzo; Carlos A. Aguilar-Salinas; Samuel Canizales-Quinteros; Teresa Tusié-Luna; Laura Riba; Maricela Rodríguez-Cruz; Mardia Lopez-Alarcón; Ramón Coral-Vazquez

The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call ‘First American’. However, speakers of Eskimo–Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.


PLOS Genetics | 2008

Geographic patterns of genome admixture in Latin American Mestizos.

Sijia Wang; Nicolas Ray; Winston Rojas; María Victoria Parra; Gabriel Bedoya; Carla Gallo; Giovanni Poletti; Guido Mazzotti; Kim Hill; Ana Magdalena Hurtado; Beatriz Camrena; Humberto Nicolini; William Klitz; Ramiro Barrantes; Julio Molina; Nelson B. Freimer; Maria Cátira Bortolini; Francisco M. Salzano; Maria Luiza Petzl-Erler; Luiza Tamie Tsuneto; José Edgardo Dipierri; Emma Alfaro; Graciela Bailliet; N. O. Bianchi; Elena Llop; Francisco Rothhammer; Laurent Excoffier; Andres Ruiz-Linares

The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region.


American Journal of Human Genetics | 2008

Mitochondrial Population Genomics Supports a Single Pre-Clovis Origin with a Coastal Route for the Peopling of the Americas

Nelson Jurandi Rosa Fagundes; Ricardo Kanitz; Roberta Eckert; Ana Carolina Silva e Valls; Maurício Reis Bogo; Francisco M. Salzano; David Glenn Smith; Wilson A. Silva; Marco A. Zago; Andrea K. Ribeiro-dos-Santos; Sidney Santos; Maria Luiza Petzl-Erler; Sandro L. Bonatto

It is well accepted that the Americas were the last continents reached by modern humans, most likely through Beringia. However, the precise time and mode of the colonization of the New World remain hotly disputed issues. Native American populations exhibit almost exclusively five mitochondrial DNA (mtDNA) haplogroups (A-D and X). Haplogroups A-D are also frequent in Asia, suggesting a northeastern Asian origin of these lineages. However, the differential pattern of distribution and frequency of haplogroup X led some to suggest that it may represent an independent migration to the Americas. Here we show, by using 86 complete mitochondrial genomes, that all Native American haplogroups, including haplogroup X, were part of a single founding population, thereby refuting multiple-migration models. A detailed demographic history of the mtDNA sequences estimated with a Bayesian coalescent method indicates a complex model for the peopling of the Americas, in which the initial differentiation from Asian populations ended with a moderate bottleneck in Beringia during the last glacial maximum (LGM), around approximately 23,000 to approximately 19,000 years ago. Toward the end of the LGM, a strong population expansion started approximately 18,000 and finished approximately 15,000 years ago. These results support a pre-Clovis occupation of the New World, suggesting a rapid settlement of the continent along a Pacific coastal route.


American Journal of Human Genetics | 2007

A Genomewide Admixture Map for Latino Populations

Alkes L. Price; Nick Patterson; Fuli Yu; D. R. Cox; Alicja Waliszewska; Gavin J. McDonald; Arti Tandon; Christine Schirmer; Julie Neubauer; Gabriel Bedoya; Constanza Duque; Alberto Villegas; Maria Cátira Bortolini; Francisco M. Salzano; Carla Gallo; Guido Mazzotti; Marcela K. Tello-Ruiz; Laura Riba; Carlos A. Aguilar-Salinas; Samuel Canizales-Quinteros; Marta Menjivar; William Klitz; Brian E. Henderson; Christopher A. Haiman; Cheryl A. Winkler; Teresa Tusié-Luna; Andres Ruiz-Linares; David Reich

Admixture mapping is an economical and powerful approach for localizing disease genes in populations of recently mixed ancestry and has proven successful in African Americans. The method holds equal promise for Latinos, who typically inherit a mix of European, Native American, and African ancestry. However, admixture mapping in Latinos has not been practical because of the lack of a map of ancestry-informative markers validated in Native American and other populations. To address this, we screened multiple databases, containing millions of markers, to identify 4,186 markers that were putatively informative for determining the ancestry of chromosomal segments in Latino populations. We experimentally validated each of these markers in at least 232 new Latino, European, Native American, and African samples, and we selected a subset of 1,649 markers to form an admixture map. An advantage of our strategy is that we focused our map on markers distinguishing Native American from other ancestries and restricted it to markers with very similar frequencies in Europeans and Africans, which decreased the number of markers needed and minimized the possibility of false disease associations. We evaluated the effectiveness of our map for localizing disease genes in four Latino populations from both North and South America.


American Journal of Human Genetics | 2003

Y-Chromosome Evidence for Differing Ancient Demographic Histories in the Americas

Maria-Cátira Bortolini; Francisco M. Salzano; Mark G. Thomas; Steven Stuart; Selja P. K. Nasanen; Claiton Henrique Dotto Bau; Mara H. Hutz; Zulay Layrisse; Maria Luiza Petzl-Erler; Luiza Tamie Tsuneto; Kim Hill; Ana Magdalena Hurtado; Dinorah C. Castro-de-Guerra; Maria Mercedes Torres; Helena Groot; Roman Michalski; Pagbajabyn Nymadawa; Gabriel Bedoya; Neil Bradman; Damian Labuda; Andres Ruiz-Linares

To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.


Archive | 2001

The evolution and genetics of Latin American populations

Francisco M. Salzano; Maria Cátira Bortolini

The human genetic make-up of Latin America is a reflection of successive waves of colonization and immigration. To date there have been few works dealing with the biology of human populations at a continental scale, and while much information is available on the genetics of Latin American populations, most data remain scattered throughout the literature. This volume examines for the first time Latin American human populations in relation to their origins, environment, history, demography and genetics, drawing on aspects of nutrition, physiology and morphology for an integrated and multidisciplinary approach. The result is a fascinating account of a people characterized by a turbulent history, marked heterogeneity and unique genetic traits. Of interest to students and researchers of genetics, evolution, biological anthropology and the social sciences, this book will also appeal to anyone concerned with the multifaceted evolution of our species and constitutes an important volume not only for anthropological genetics, but also for Latin American research.


PLOS Genetics | 2014

Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals

Andres Ruiz-Linares; Kaustubh Adhikari; Victor Acuña-Alonzo; Mirsha Quinto-Sánchez; Claudia Jaramillo; William Arias; Macarena Fuentes; Marı́a Pizarro; Paola Everardo; Francisco de Avila; Jorge Gómez-Valdés; Paola León-Mimila; Tábita Hünemeier; Virginia Ramallo; Caio Cesar Silva de Cerqueira; Mari-Wyn Burley; Esra Konca; Marcelo Zagonel de Oliveira; Maurício Roberto Veronez; Marta Rubio-Codina; Orazio Attanasio; Sahra Gibbon; Nicolas Ray; Carla Gallo; Giovanni Poletti; Javier Rosique; Lavinia Schuler-Faccini; Francisco M. Salzano; Maria Cátira Bortolini; Samuel Canizales-Quinteros

The current genetic makeup of Latin America has been shaped by a history of extensive admixture between Africans, Europeans and Native Americans, a process taking place within the context of extensive geographic and social stratification. We estimated individual ancestry proportions in a sample of 7,342 subjects ascertained in five countries (Brazil, Chile, Colombia, México and Perú). These individuals were also characterized for a range of physical appearance traits and for self-perception of ancestry. The geographic distribution of admixture proportions in this sample reveals extensive population structure, illustrating the continuing impact of demographic history on the genetic diversity of Latin America. Significant ancestry effects were detected for most phenotypes studied. However, ancestry generally explains only a modest proportion of total phenotypic variation. Genetically estimated and self-perceived ancestry correlate significantly, but certain physical attributes have a strong impact on self-perception and bias self-perception of ancestry relative to genetically estimated ancestry.


Molecular Ecology | 2010

The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca)

Taiana Haag; Anelisie S. Santos; Denis Alessio Sana; Ronaldo G. Morato; Laury Cullen; Peter G. Crawshaw; C. De Angelo; M. S. Di Bitetti; Francisco M. Salzano; Eduardo Eizirik

Habitat fragmentation may disrupt original patterns of gene flow and lead to drift‐induced differentiation among local population units. Top predators such as the jaguar may be particularly susceptible to this effect, given their low population densities, leading to small effective sizes in local fragments. On the other hand, the jaguar’s high dispersal capabilities and relatively long generation time might counteract this process, slowing the effect of drift on local populations over the time frame of decades or centuries. In this study, we have addressed this issue by investigating the genetic structure of jaguars in a recently fragmented Atlantic Forest region, aiming to test whether loss of diversity and differentiation among local populations are detectable, and whether they can be attributed to the recent effect of drift. We used 13 microsatellite loci to characterize the genetic diversity present in four remnant populations, and observed marked differentiation among them, with evidence of recent allelic loss in local areas. Although some migrant and admixed individuals were identified, our results indicate that recent large‐scale habitat removal and fragmentation among these areas has been sufficiently strong to promote differentiation induced by drift and loss of alleles at each site. Low estimated effective sizes supported the inference that genetic drift could have caused this effect within a short time frame. These results indicate that jaguars’ ability to effectively disperse across the human‐dominated landscapes that separate the fragments is currently very limited, and that each fragment contains a small, isolated population that is already suffering from the effects of genetic drift.


Journal of Molecular Evolution | 1998

Phylogeographic Patterns and Evolution of the Mitochondrial DNA Control Region in Two Neotropical Cats (Mammalia, Felidae)

Eduardo Eizirik; Sandro L. Bonatto; Warren E. Johnson; Peter G. Crawshaw; Jean Cristophe Vié; Dulce M. Brousset; Stephen J. O'Brien; Francisco M. Salzano

Abstract. The ocelot (Leopardus pardalis) and margay (L. wiedii) are sister-species of Neotropical cats which evolved from a lineage that migrated into South America during the formation of the Panamanian land bridge 3–5 million years ago. Patterns of population genetic divergence of each species were studied by phylogenetic analyses of mitochondrial DNA (mtDNA) control region sequences in individuals sampled across the distribution of these taxa. Abundant genetic diversity and remarkably concordant phylogeographic partitions for both species were observed, identifying parallel geographic regions which likely reflect historical faunal barriers. Inferred aspects of phylogeography, population genetic structure, and demographic history were used to formulate conservation recommendations for these species. In addition, observed patterns of sequence variation provided insight into the molecular evolution of the mtDNA control region in closely related felids.

Collaboration


Dive into the Francisco M. Salzano's collaboration.

Top Co-Authors

Avatar

Sandro L. Bonatto

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Mara H. Hutz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Maria Cátira Bortolini

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Sidia M. Callegari-Jacques

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Tania de Azevedo Weimer

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Loreta Brandao de Freitas

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Tábita Hünemeier

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Loreta B. Freitas

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Kim Hill

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge