Francisco Marco
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Marco.
Planta | 2010
Rubén Alcázar; Teresa Altabella; Francisco Marco; Cristina Bortolotti; Matthieu Reymond; Csaba Koncz; Pedro Carrasco; Antonio F. Tiburcio
Early studies on plant polyamine research pointed to their involvement in responses to different environmental stresses. During the last few years, genetic, transcriptomic and metabolomic approaches have unravelled key functions of different polyamines in the regulation of abiotic stress tolerance. Nevertheless, the precise molecular mechanism(s) by which polyamines control plant responses to stress stimuli are largely unknown. Recent studies indicate that polyamine signalling is involved in direct interactions with different metabolic routes and intricate hormonal cross-talks. Here we discuss the integration of polyamines with other metabolic pathways by focusing on molecular mechanisms of their action in abiotic stress tolerance. Recent advances in the cross talk between polyamines and abscisic acid are discussed and integrated with processes of reactive oxygen species (ROS) signalling, generation of nitric oxide, modulation of ion channel activities and Ca2+ homeostasis, amongst others.
Biotechnology Letters | 2006
Rubén Alcázar; Francisco Marco; Juan C. Cuevas; Macarena Patron; Alejandro Ferrando; Pedro Carrasco; Antonio F. Tiburcio; Teresa Altabella
Environmental stresses are the major cause of crop loss worldwide. Polyamines are involved in plant stress responses. However, the precise role(s) of polyamine metabolism in these processes remain ill-defined. Transgenic approaches demonstrate that polyamines play essential roles in stress tolerance and open up the possibility to exploit this strategy to improve plant tolerance to multiple environmental stresses. The use of Arabidopsis as a model plant enables us to carry out global expression studies of the polyamine metabolic genes under different stress conditions, as well as genome-wide expression analyses of insertional-mutants and plants over-expressing these genes. These studies are essential to dissect the polyamine mechanism of action in order to design new strategies to increase plant survival in adverse environments.
Plant Physiology | 2011
María Elisa Gonzalez; Francisco Marco; Eugenio G. Minguet; Pedro Carrasco-Sorli; Miguel A. Blázquez; Juan Carbonell; Oscar A. Ruiz; Fernando L. Pieckenstain
The role of the tetraamine spermine in plant defense against pathogens was investigated by using the Arabidopsis (Arabidopsis thaliana)-Pseudomonas viridiflava pathosystem. The effects of perturbations of plant spermine levels on susceptibility to bacterial infection were evaluated in transgenic plants (35S::spermine synthase [SPMS]) that overexpressed the SPMS gene and accumulated spermine, as well as in spms mutants with low spermine levels. The former exhibited higher resistance to P. viridiflava than wild-type plants, while the latter were more susceptible. Exogenous supply of spermine to wild-type plants also increased disease resistance. Increased resistance provided by spermine was partly counteracted by the polyamine oxidase inhibitor SL-11061, demonstrating that the protective effect of spermine partly depends on its oxidation. In addition, global changes in gene expression resulting from perturbations of spermine levels were analyzed by transcript profiling 35S::SPMS-9 and spms-2 plants. Overexpression of 602 genes was detected in 35S::SPMS-9 plants, while 312 genes were down-regulated, as compared to the wild type. In the spms-2 line, 211 and 158 genes were up- and down-regulated, respectively. Analysis of gene ontology term enrichment demonstrated that many genes overexpressed only in 35S::SPMS-9 participate in pathogen perception and defense responses. Notably, several families of disease resistance genes, transcription factors, kinases, and nucleotide- and DNA/RNA-binding proteins were overexpressed in this line. Thus, a number of spermine-responsive genes potentially involved in resistance to P. viridiflava were identified. The obtained results support the idea that spermine contributes to plant resistance to P. viridiflava.
Plant Signaling & Behavior | 2011
Analía I. Alet; Diego H. Sanchez; Juan C. Cuevas; Secundino del Valle; Teresa Altabella; Antonio F. Tiburcio; Francisco Marco; Alejandro Ferrando; Fabiana Daniela Espasandin; María Elisa Gonzalez; Pedro Carrasco; Oscar A. Ruiz
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.
Plant Cell and Environment | 2017
Xavier Zarza; Kostadin E. Atanasov; Francisco Marco; Pedro Carrasco; Joachim Kopka; Vasileios Fotopoulos; Teun Munnik; Aurelio Gómez-Cadenas; Antonio F. Tiburcio; Rubén Alcázar
The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine and its structural isomer thermospermine (tSpm) into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimulation of abscisic acid and jasmonate (JA) biosynthesis and accumulation of important compatible solutes, such as sugars, polyols and proline, as well as TCA cycle intermediates were observed in atpao5 mutants under salt stress. Expression analyses indicate that tSpm modulates the transcript levels of several target genes, including many involved in the biosynthesis and signalling of JA, some of which are already known to promote salinity tolerance. Transcriptional modulation by tSpm is isomer-dependent, thus demonstrating the specificity of this response. Overall, we conclude that tSpm triggers metabolic and transcriptional reprogramming that promotes salt stress tolerance in Arabidopsis.
Archive | 2015
Francisco Marco; Marta Bitrián; Pedro Carrasco; Manchikatla Venkat Rajam; Rubén Alcázar; Antonio F. Tiburcio
Crop plants are affected by a variety of abiotic stresses such as salinity, drought, extreme temperatures, and oxidative stress and cause a significant yield loss (more than 50 %). In the near future, these abiotic stresses might increase because of global climate change. Abiotic stresses lead to dehydration or osmotic stress through reduced availability of water for vital cellular functions and maintenance of turgor pressure and also result in high production of reactive oxygen species (ROS). Plants are evolved with various mechanisms such as changes in cellular and metabolic processes to cope with the stress condition. Recent developments in molecular genetics have contributed greatly to our understanding of the biochemical and genetic basis of abiotic stress tolerance. This has led to the development of abiotic stress-tolerant plants with yield advantage by modulation of the expression of the genes that encode for enzymes involved in the biosynthesis of osmoprotectants (e.g., proline, sugars, sugar alcohol, glycine betaine, and polyamines), antioxidant enzymes, protective proteins (e.g., LEAs and HSPs), transporters, regulatory proteins, kinases, and transcription factors. More recently, posttranscriptional and posttranslational regulation mechanisms of the abiotic stress response, like microRNAs and ubiquitination, appear as promising new modulation targets to develop abiotic stress-tolerant plants and contribute to the development of more productive crops to feed the growing mass.
Frontiers in Plant Science | 2014
Francisco Marco; Enrique Buso; Pedro Carrasco
It has been previously described that elevation of endogenous spermine levels in Arabidopsis could be achieved by transgenic overexpression of S-Adenosylmethionine decarboxylase (SAMDC) or Spermine synthase (SPMS). In both cases, spermine accumulation had an impact on the plant transcriptome, with up-regulation of a set of genes enriched in functional categories involved in defense-related processes against both biotic and abiotic stresses. In this work, the response of SAMDC1-overexpressing plants against bacterial and oomycete pathogens has been tested. The expression of several pathogen defense-related genes was induced in these plants as well as in wild type plants exposed to an exogenous supply of spermine. SAMDC1-overexpressing plants showed an increased tolerance to infection by Pseudomonas syringae and by Hyaloperonospora arabidopsidis. Both results add more evidence to the hypothesis that spermine plays a key role in plant resistance to biotic stress.
Archive | 2015
Francisco Marco; Marta Bitrián; Pedro Carrasco; Rubén Alcázar; Antonio F. Tiburcio
Polyamines (PAs) are small polycationic molecules which are present in all living organisms. PAs have been involved in a wide array of metabolic plant processes, extending from development to stress protection. Most of this knowledge has been achieved through the observation of PA homeostasis and manipulation of plant PA levels mediated by different approaches. This chapter summarizes the approaches undertaken to demonstrate the relationship between PAs and the stress response and, in particular, how the genetic manipulation of polyamine levels has evolved in a useful tool for the enhancement of plant stress tolerance in many species, including crops. This chapter also includes the most recent advances in the potential mechanisms of action by which polyamines could contribute to stress protection. Apart from a protective role based of its structural properties, PAs can also play regulatory roles, either directly or indirectly by the interaction with other signalling pathways including ion channel regulation, nitric oxide, reactive oxygen species (ROS) signalling and abscisic acid (ABA).
Planta | 2002
Francisco Marco; Pedro Carrasco
BMC Plant Biology | 2014
Francisco J. Escaray; Valentina Passeri; Florencia M Babuin; Francisco Marco; Pedro Carrasco; Francesco Damiani; Fernando L. Pieckenstain; Francesco Paolocci; Oscar A. Ruiz