Francisco Molina-Lopez
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Molina-Lopez.
Science Advances | 2017
Yue Wang; Chenxin Zhu; Raphael Pfattner; Hongping Yan; Lihua Jin; Shucheng Chen; Francisco Molina-Lopez; Franziska Lissel; Jia Liu; Noelle I. Rabiah; Zheng Chen; Jong Won Chung; Christian Linder; Michael F. Toney; Boris Murmann; Zhenan Bao
A polymer is described that is conductive and stretchable, which can lead to electronics that can conform to the human body. Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.
Nature | 2018
Sihong Wang; Jie Xu; Weichen Wang; Ging-Ji Nathan Wang; Reza Rastak; Francisco Molina-Lopez; Jong Won Chung; Simiao Niu; Vivian R. Feig; Jeffery Lopez; Ting Lei; Soon-Ki Kwon; Yeongin Kim; Amir M. Foudeh; Anatol Ehrlich; Andrea Gasperini; Youngjun Yun; Boris Murmann; Jeffery B.-H. Tok; Zhenan Bao
Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human–machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current–voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.
Journal of Micromechanics and Microengineering | 2013
Francisco Molina-Lopez; A. Vasquez Quintero; Giorgio Mattana; D. Briand; N.F. de Rooij
This work presents the simultaneous fabrication of ambient relative humidity (RH) and temperature sensors arrays, inkjet-printed on flexible substrates and subsequently encapsulated at foil level. These sensors are based on planar interdigitated capacitors with an inkjet-printed sensing layer and meander-shaped resistors. Their combination allows the compensation of the RH signals variations at different temperatures. The whole fabrication of the system is carried out at foil level and involves the utilization of additive methods such as inkjet-printing and electrodeposition. Electrodeposition of the printed lines resulted in an improvement of the thermoresistors. The sensors have been characterized and their performances analyzed. The encapsulation layer does not modify the performances of the sensors in terms of sensitivity or response time. This work demonstrates the potential of inkjet-printing in the large-area fabrication of light-weight and cost-efficient gas sensors on flexible substrates.
IEEE Sensors Journal | 2013
Giorgio Mattana; Thomas Kinkeldei; David Leuenberger; Caglar Ataman; Jinyu J. Ruan; Francisco Molina-Lopez; Andrés Vásquez Quintero; Giovanni Nisato; Gerhard Tröster; D. Briand; Nico F. de Rooij
In this paper, a woven textile containing temperature and humidity sensors realized on flexible, plastic stripes is presented. The authors introduce two different sensors fabrication techniques: the first one consists of a conventional photolithography patterning technique; the second one, namely inkjet-printing, is here presented as an effective, low-cost alternative. In both cases, we obtain temperature and humidity sensors that can be easily integrated within a fabric by using a conventional weaving machine. All the sensors are fully characterized and the performances obtained with the two different fabrication techniques are compared and discussed, pointing out advantages and drawbacks resulting from each fabrication technique. The bending tests performed on these sensors show that they can be successfully woven without being damaged. A demonstrator, consisting of a mechanical support for the e-textile, a read-out electronic circuit, and a graphical PC interface to monitor the acquisition of humidity and temperature values, is also presented and described. This paper opens an avenue for real integration between printed electronics and traditional textile technology and materials. Printing techniques may be successfully used for the fabrication of e-textile devices, paving the way for the production of large area polymeric stripes and thus enabling new applications that, at the moment, cannot be developed with the standard lithography methods.
Analytical Chemistry | 2014
Ehsan Danesh; Francisco Molina-Lopez; M. Camara; Alexia Bontempi; Andrés Vásquez Quintero; Damien Teyssieux; L. Thiery; D. Briand; Nico F. de Rooij; Krishna C. Persaud
Conducting polyaniline-based chemiresistors on printed polymeric micro-hotplates were developed, showing sensitive and selective detection of ammonia vapor in air. The devices consist of a fully inkjet-printed silver heater and interdigitated electrodes on a polyethylene naphthalate substrate, separated by a thin dielectric film. The integrated heater allowed operation at elevated temperatures, enhancing the ammonia sensing performance. The printed sensor designs were optimized over two different generations, to improve the thermal performance through careful design of the shape and dimension of the heater element. A vapor-phase deposition polymerization technique was adapted to produce polyaniline sensing layers doped with poly(4-styrenesulfonic acid). The resulting sensor had better thermal stability and sensing performance when compared with conventional polyaniline-based sensors, and this was attributed to the polymeric dopant used in this study. Improved long-term stability of the sensors was achieved by electrodeposition of gold on the silver electrodes. Response to sub-parts-per-million concentrations of ammonia even under humid conditions was observed.
IEEE Sensors Journal | 2014
José F. Salmerón; Francisco Molina-Lopez; Almudena Rivadeneyra; A. Vasquez Quintero; L.F. Capitán-Vallvey; N.F. de Rooij; J. Banqueri Ozaez; D. Briand; Alberto J. Palma
Taking advantage of the sensor interface capabilities of a radio frequency identification (RFID) chip, the integration of different types of sensors on printed ultrahigh frequency (UHF) RFID tags is investigated. The design, development, and testing of printed smart sensing tags compatible with the RFID standard electronic product code Gen 2 is presented. Two different strategies are employed to interface the sensors: 1) passive single-chip and 2) semipassive architectures. Both strategies provide sensor data by directly answering to the RFID reader inquiries or using a data logging mechanism to store the sensor data in the RFID chip memory. Temperature readout is measured using the embedded sensor in the RFID chip. Additionally, a light sensor and pressure sensor interfaced to a microcontroller are implemented in the passive and semipassive tags versions, respectively. For the employed RFID chip, two different UHF antennas are designed and printed using inkjet and screen printing to compare their radio frequency performances. Finally, the fabricated smart tags are fully validated through measurements in an anechoic chamber and their behaviors are compared with numerical simulation. The screen printed semipassive RFID tag with loop antenna shows a better reading range than the inkjet-printed one, whereas the passive tag can be considered as the most cost-effective system.
ieee sensors | 2012
Francisco Molina-Lopez; D. Briand; Nico F. de Rooij; Maria Smolander
Small fully inkjet-printed gas sensors based on capacitive parallel-plate (PP) structures have been realized on flexible plastic foil and characterized. A gas sensing layer was inkjet-printed between inkjet-printed bottom and top silver electrodes. Compared with comb electrode (CE) geometries, PP structures drastically reduce the developing complexity of gas sensors on polymeric foil, avoiding the substrate parasitic signal. Furthermore, the use of porous inkjet-printed metal makes the patterning of complex grids on the top electrode unnecessary, since such porosity permits the analyte to flow into the sensing layer. This low demanding patterning resolution facilitates the miniaturization of the inkjet-printed sensors, introducing significant improvements in their sensing performances, such as sensitivity or response time. The printed sensing devices were characterized against pulses of relative humidity (R.H.) and their performances were analyzed.
Microelectronics Reliability | 2014
Francisco Molina-Lopez; R.E. de Araújo; M. Jarrier; J. Courbat; D. Briand; N.F. de Rooij
We have experimentally studied the variation in electrical resistance of flexible platinum lines patterned on polyimide foil when they are subjected to circular bending constraints. The lines were patterned by means of standard photolithography and sputtering deposition. Two different photolithography masks were used for comparative evaluation: an un-expensive transparency mask and a standard chromium mask. Measurements of the temperature coefficient of resistance (TCR) and time stability of the resistance have been acquired for lines bent down to 1.25 mm radius of curvature on a customized bending setup, showing good reliability results. The robustness of the lines has been also assessed by registering their change in resistance while bending at different radii of curvature. The lines showed reliability issues for radii of curvature below 1.25 mm, presenting a resistance variation of 19% for transparency mask-fabricated lines and 9% for chromium mask-fabricated lines. The worse reliability performances of transparency mask lines, compared to the chromium mask ones, was found to be due to their imperfect edges, which promoted the formation and propagation of cracks during bending. The results of the experiments in this work permitted to compare the performances of flexible conductive lines with different geometry and fabricated with two different masks, establishing quantitative and qualitative bending limits for their appropriate operation in flexible electronics systems.
ieee international newcas conference | 2012
D. Briand; Francisco Molina-Lopez; Andrés Vásquez Quintero; Giorgio Mattana; Nico F. de Rooij
This communication presents an overview on our activities on the development of printed sensors on flexible polymeric foil for RFID. We are envisioning the direct printing of sensors on different types of products such as smart labels and RFID tags. This technology could bring sensors where there is no sensor at the moment by significantly reducing their production cost and by adding new functionalities. The integration of these sensors fabricated on plastic foil with electronics, communication and powering capabilities will be addressed. The realization of cost-effective smart objects can be one of the key enabling technologies for the deployment of the Internet of Things (IoT).
IEEE\/ASME Journal of Microelectromechanical Systems | 2014
David A. de Koninck; Francisco Molina-Lopez; D. Briand; Nico F. de Rooij
A cleanroom-free fabrication process adapted to microfluidic devices is presented for pyrotechnical microelectromechanical systems balloon actuators. The actuators are intended for on-chip pumping and fluid ejection to replace tabletop pumping solutions in low-cost portable single-use microfluidic devices. The fabrication process leveraged polymeric foils (polyethylene terephthalate, SU-8, polydimethylsiloxane) for the structure, directly bonded using surface treatments, heat and pressure, and inkjet printing and electroplating for the igniter. This paper also presents a semianalytical model that successfully predicted the inflation height of the balloon for a given device geometry and propellant loading.