Francisco Pérez-Pla
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Pérez-Pla.
New Journal of Chemistry | 2002
Jamal El Haskouri; David Ortiz de Zárate; Francisco Pérez-Pla; Antonio Cervilla; Carmen Guillem; Julio Latorre; M. Dolores Marcos; Aurelio Beltrán; Daniel Beltrán; Pedro Amorós
Nanosized Ti-UVM-7 materials with a hierarchical system of pores at two different length scales have been prepared through a one-pot procedure by using a simple template agent; the catalytic activity and selectivity of the resulting materials in bulky olefin epoxidation by organic peroxides are the highest reported to date.
Dalton Transactions | 2004
Antonio Cervilla; Francisco Pérez-Pla; Elisa Llopis; Maria Piles
The kinetic study of the spontaneous reduction of some neutral tris-dithiolene complexes [ML3] of molybdenum(VI) and tungsten(VI), (L = S2C6H4(2-), S2C6H3CH3(2-) and S2C2(CH3)2(2-); M = Mo or W) by tetrabutylammonium hydroxide in tetrahydrofuran-water solutions demonstrates that OH- is an effective reductant. Their reduction is fast, clean and quantitative. Depending upon both the molar ratio in which the reagents are mixed and the amount of water present, one- or two-electron reductions of these tris-dithiolene complexes were observed. If Bu4NOH is present in low concentration or/and at high concentrations of water, the total transformation of the neutral M(VI) complex into the monoanionic M(V) complex is the only observed process. Stopped-flow kinetic data for this reaction are consistent with the rate law: -d[ML3]/dt = d[ML3-]/dt = k[ML3][Bu4NOH]. The proposed mechanism involves nucleophilic attack of OH- to form a mono-anionic seven-coordinate intermediate [ML3OH]-, which interacts with another molecule of [ML3] to generate the monoanionic complex [ML3]- transfering the oxygen from coordinated OH- to water. Hydrogen peroxide was identified as the reaction product. The molybdenum complexes are more difficult to reduce than their corresponding tungsten complexes, and the values of k obtained for the molybdenum and tungsten series of complexes increase as the ene-1,2-dithiolate ligand becomes more electron-withdrawing (S2C6H4(2-) > S2C6H3CH3(2-) > S2C2(CH3)2(2-)). This investigation constitutes the only well-established interaction between hydroxide ion and a tris(dithiolene) complex, and supports a highly covalent bonding interaction between the metal and the hydroxide ion that modulates electron transfer reactions within these complexes.
Journal of Hazardous Materials | 2015
Andrea Barba‐Bon; Ramón Martínez-Máñez; Félix Sancenón; Ana M. Costero; Salvador Gil; Francisco Pérez-Pla; Elisa Llopis
We report herein a study of the hydrolysis of Tabun mimic DCNP in the presence of different amines, aminoalcohols and glycols as potential suitable organocatalysts for DCNP degradation. Experiments were performed in CD3CN in the presence of 5% D2O, which is a suitable solvent mixture to follow the DCNP hydrolysis. These studies allowed the definition of different DCNP depletion paths, resulting in the formation of diethylphosphoric acid, tetraethylpyrophosphate and phosphoramide species as final products. Without organocatalysts, DCNP hydrolysis occurred mainly via an autocatalysis path. Addition of tertiary amines in sub-stoichiometric amounts largely enhanced DCNP depletion whereas non-tertiary polyamines reacted even faster. Glycols induced very slight increment in the DCNP hydrolysis, whereas DCNP hydrolysis increased sharply in the presence of certain aminoalcohols especially, 2-(2-aminoethylamino)ethanol. For the latter compound, DCNP depletion occurred ca. 80-fold faster than in the absence of organocatalysts. The kinetic studies revealed that DCNP hydrolysis in the presence of 2-(2-aminoethylamino)ethanol occurred via a catalytic process, in which the aminoalcohol was involved. DCNP hydrolysis generally depended strongly on the structure of the amine, and it was found that the presence of the OHCH2CH2N moiety in the organocatalyst structure seems important to induce a fast degradation of DCNP.
Nanomaterials | 2018
Pedro Burguete; José Manuel Morales; Lorenzo Fernández; Jamal El Haskouri; Julio Latorre; Carmen Guillem; Francisco Pérez-Pla; Ana Cros; Daniel Beltrán; Aurelio Beltrán; Pedro Amorós
Mesostructured layered silicas have been prepared through a surfactant-assisted procedure using neutral alkylamines as templates and starting from atrane complexes as hydrolytic inorganic precursors. By adjusting the synthetic parameters, this kinetically controlled reproducible one-pot method allows for obtaining both pure and functionalized (inorganic or organically) lamellar silica frameworks. These are easily deconstructed and built up again, which provides a simple way for expanding the interlamellar space. The materials present high dispersibility, which results in stable colloidal suspensions.
ACS Applied Materials & Interfaces | 2018
Alice Antonello; Cesare Benedetti; Francisco Pérez-Pla; Maria Kokkinopoulou; Katrin Kirchhoff; Viktor Fischer; Katharina Landfester; Silvia Gross; Rafael Muñoz-Espí
Nanodroplets in inverse miniemulsions provide a colloidal confinement for the crystallization of ammonium phosphomolybdate (APM), influencing the resulting particle size. The effects of the space confinement are investigated by comparing the crystallization of analogous materials both in miniemulsion and in bulk solution. Both routes result in particles with a rhombododecahedral morphology, but the ones produced in miniemulsion have sizes between 40 and 90 nm, 3 orders of magnitude smaller than the ones obtained in bulk solution. The catalytic activity of the materials is studied by taking the epoxidation of cis-cyclooctene as a model reaction. The miniemulsion route yields APM particles catalytically much more active than analogous samples produced in bulk solution, which can be explained by their higher dispersibility in organic solvents, their higher surface area, and their higher porosity. Inorganic phosphate salt precursors are compared with organic phosphate sources. APM nanoparticles prepared in miniemulsion from d-glucose-6-phosphate and O-phospho-dl-serine yield a conversion in the epoxidation reaction of more than 90% after only 1 h, compared to 30% for materials prepared in bulk solution. In addition, the catalysts prepared in miniemulsion display a promising recyclability.
Nanotechnology | 2017
Cesare Benedetti; Paraskevi Flouda; Alice Antonello; Christine Rosenauer; Francisco Pérez-Pla; Katharina Landfester; Silvia Gross; Rafael Muñoz-Espí
The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.
Chemical Communications | 2001
Antonio Cervilla; Francisco Pérez-Pla; Elisa Llopis
Tris(benzene-1,2-dithiolate)molybdenum(VI) reacts rapidly and quantitatively with tetrabutylammonium hydroxide to yield the corresponding Mo(V) and Mo(IV) complexes and hydrogen peroxide; the reaction has been executed in dry tetrahydrofuran where the reaction rate shows a fair dependence on complex and OH- concentrations.
ChemPlusChem | 2012
Pedro Burguete; Aurelio Beltrán; Carmen Guillem; Julio Latorre; Francisco Pérez-Pla; Daniel Beltrán; Pedro Amorós
Inorganic Chemistry | 2006
Antonio Cervilla; Francisco Pérez-Pla; Elisa Llopis; Maria Piles
Journal of Physical Chemistry A | 2016
Lorenzo Fernández; Francisco Pérez-Pla; Iñaki Tuñón; Elisa Llopis