Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco R.M. Laurindo is active.

Publication


Featured researches published by Francisco R.M. Laurindo.


Journal of Biological Chemistry | 2005

Regulation of NAD(P)H Oxidase by Associated Protein Disulfide Isomerase in Vascular Smooth Muscle Cells

Mariano Janiszewski; Lucia Rossetti Lopes; Alipio O. Carmo; Marcelo A. Pedro; Ralf P. Brandes; Celio X.C. Santos; Francisco R.M. Laurindo

NAD(P)H oxidase, the main source of reactive oxygen species in vascular cells, is known to be regulated by redox processes and thiols. However, the nature of thiol-dependent regulation has not been established. Protein disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase chaperone of the thioredoxin superfamily involved in protein processing and translocation. We postulated that PDI regulates NAD(P)H oxidase activity of rabbit aortic smooth muscle cells (VSMCs). Western blotting confirmed robust PDI expression and shift to membrane fraction after incubation with angiotensin II (AII, 100 nm, 6 h). In VSMC membrane fraction, PDI antagonism with bacitracin, scrambled RNase, or neutralizing antibody led to 26-83% inhibition (p < 0.05) of oxidase activity. AII incubation led to significant increase in oxidase activity, accompanied by a 6-fold increase in PDI refolding isomerase activity. AII-induced NAD(P)H oxidase activation was inhibited by 57-71% with antisense oligonucleotide against PDI (PDIasODN). Dihydroethidium fluorescence showed decreased superoxide generation due to PDIasODN. Confocal microscopy showed co-localization between PDI and the oxidase subunits p22phox, Nox1, and Nox4. Co-immunoprecipitation assays supported spatial association between PDI and oxidase subunits p22phox, Nox1, and Nox4 in VSMCs. Moreover, in HEK293 cells transfected with green fluorescent protein constructs for Nox1, Nox2, and Nox4, each of these subunits co-immunoprecipitated with PDI. Akt phosphorylation, a known downstream pathway of AII-driven oxidase activation, was significantly reduced by PDIasODN. These results suggest that PDI closely associates with NAD(P)H oxidase and acts as a novel redox-sensitive regulatory protein of such enzyme complex, potentially affecting subunit traffic/assembling.


Cardiovascular Research | 2000

Oxidative stress as a signaling mechanism of the vascular response to injury: the redox hypothesis of restenosis.

Luciano C. P. Azevedo; Marcelo A. Pedro; Liliete C. Souza; Heraldo Possolo de Souza; Mariano Janiszewski; Protásio Lemos da Luz; Francisco R.M. Laurindo

The prominent role of redox processes in tissue injury and in vascular cell signaling suggest their involvement in the repair reaction to vessel injury, which is a key determinant of restenosis post-angioplasty. Experimental studies showed a protective effect of superoxide dismutase or antioxidants on vasospasm, neointimal thickening or remodeling after balloon injury. It was also shown that oxidized thiols induce chelatable metal-dependent amplification of the vascular repair reaction. Ongoing or completed clinical trials show a promising effect of the antioxidant probucol against restenosis. However, few studies addressed the molecular physiological mechanisms underlying the redox hypothesis of restenosis. We recently showed evidence for marked oxidative stress early after balloon injury, with superoxide production mediated primarily by non-endothelial NAD(P)H oxidase-type flavoenzyme(s). This effect was closely related to the degree of injury. There is evidence supporting a role for such early redox processes in apoptotic cell loss and NF-kappa B activation. We present new data on the time course of oxidative stress after balloon injury of intact rabbit iliac arteries. Our data show that despite substantial neointimal growth and lumen narrowing, superoxide production and glutathione levels are unaltered at day 14 and 28 after balloon injury. At day 7 after injury, the peak neointimal proliferation in this model, there was significant decrease of vascular superoxide dismutase activity, without clear evidence of spontaneous superoxide production. Thus, oxidative stress after injury is likely to be an early transient event, which parallels the inflammatory and proliferative phases of the vascular response. We propose that such early redox processes act as dose-dependent signal transducers of gene programs that affect the final repair.


Free Radical Biology and Medicine | 2012

Protein disulfide isomerase in redox cell signaling and homeostasis

Francisco R.M. Laurindo; Luciana A. Pescatore; Denise C. Fernandes

Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Oxidant Generation Predominates Around Calcifying Foci and Enhances Progression of Aortic Valve Calcification

Marcel Liberman; Estêvão Bassi; Marina Kamla Martinatti; Fábio Cerqueira Lario; João Wosniak; Pablo Maria Alberto Pomerantzeff; Francisco R.M. Laurindo

Objective—We hypothesized that reactive oxygen species (ROS) contribute to progression of aortic valve (AV) calcification/stenosis. Methods and Results—We investigated ROS production and effects of antioxidants tempol and lipoic acid (LA) in calcification progression in rabbits given 0.5% cholesterol diet +104 IU/d Vit.D2 for 12 weeks. Superoxide and H2O2 microfluorotopography and 3-nitrotyrosine immunoreactivity showed increased signals not only in macrophages but preferentially around calcifying foci, in cells expressing osteoblast/osteoclast, but not macrophage markers. Such cells also showed increased expression of NAD(P)H oxidase subunits Nox2, p22phox, and protein disulfide isomerase. Nox4, but not Nox1 mRNA, was increased. Tempol augmented whereas LA decreased H2O2 signals. Importantly, AV calcification, assessed by echocardiography and histomorphometry, decreased 43% to 70% with LA, but increased with tempol (P≤0.05). Tempol further enhanced apoptosis and Nox4 expression. In human sclerotic or stenotic AV, we found analogous increases in ROS production and NAD(P)H oxidase expression around calcifying foci. An in vitro vascular smooth muscle cell (VSMC) calcification model also exhibited increased, catalase-inhibitable, calcium deposit with tempol, but not with LA. Conclusions—Our data provide evidence that ROS, particularly hydrogen peroxide, potentiate AV calcification progression. However, tempol exhibited a paradoxical effect, exacerbating AV/vascular calcification, likely because of its induced increase in peroxide generation.


PLOS Pathogens | 2011

Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota

Jose Henrique M. Oliveira; Renata L. S. Gonçalves; Flávio Alves Lara; Felipe A. Dias; Ana Caroline P. Gandara; Rubem F. S. Menna-Barreto; Meredith C. Edwards; Francisco R.M. Laurindo; Mário A.C. Silva-Neto; Marcos Henrique Ferreira Sorgine; Pedro L. Oliveira

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.


Free Radical Biology and Medicine | 2000

Vascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity.

Heraldo Possolo de Souza; Liliete C. Souza; Veruska M Anastacio; Alexandre C. Pereira; Maria de Lourdes Junqueira; José Eduardo Krieger; Protásio Lemos da Luz; Ohara Augusto; Francisco R.M. Laurindo

Available evidence for oxidative stress after angioplasty is indirect or ambiguous. We sought to characterize the pattern, time course, and possible sources of free radical generation early after arterial balloon injury. Ex vivo injury performed in arterial rings in buffer with lucigenin yielded a massive oxygen-dependent peak of luminescence that decayed exponentially and was proportional to the degree of injury. Signals for injured vs. control arteries were 207. 1 +/- 17.9 (n = 13) vs 4.1 +/- 0.7 (n = 22) cpm x 10(3)/mg/min (p <. 001). Data obtained with 0.25 mmol/l lucigenin were validated with 0. 005-0.05 mmol/l lucigenin or the novel superoxide-sensitive probe coelenterazine (5 micromol/l). Gentle removal of endothelium prior to injury scarcely affected the amount of luminescence. Lucigenin signals were amplified 5- to 20-fold by exogenous NAD(P)H, and were >85% inhibited by diphenyliodonium (DPI, a flavoenzyme inhibitor). Antagonists of several other potential free radical sources, including xanthine oxidase, nitric oxide synthase, and mitochondrial electron transport, were without effect. Overdistension of intact rabbit iliac arteries in vivo (n = 7) induced 72% fall in intracellular reduced glutathione and 68% increase in oxidized glutathione, so that GSH/GSSG ratio changed from 7.93 +/- 2.14 to 0. 81 +/- 0.16 (p <.005). There was also 28.7% loss of the glutathione pool. Further studies were performed with electron paramagnetic resonance spectroscopy. Rabbit aortas submitted to ex vivo overdistension in the presence of the spin trap DEPMPO (5-diethoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide, 100 mmol/l, n = 5) showed formation of radical adduct spectra, abolished by DPI or superoxide dismutase. Computer simulation indicated a mixture of hydroxyl and carbon-centered radical adducts, likely due to decay of superoxide adduct. Electrical mobility shift assays for NF-kappaB activation were performed in nuclear protein extracts from intact or previously injured rabbit aortas. Balloon injury induced early NF-kappaB activation, which was decreased by DPI. In conclusion, our data show unambiguously that arterial injury induces an immediate profound vascular oxidative stress. Such redox imbalance is likely accounted for by activation of vessel wall NAD(P)H oxidoreductase(s), generating radical species potentially involved in tissue repair.


Antioxidants & Redox Signaling | 2008

Cross-Talk Between Mitochondria and NADPH Oxidase: Effects of Mild Mitochondrial Dysfunction on Angiotensin II-Mediated Increase in Nox Isoform Expression and Activity in Vascular Smooth Muscle Cells

João Wosniak; Celio X.C. Santos; Alicia J. Kowaltowski; Francisco R.M. Laurindo

Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII.


Journal of the American College of Cardiology | 2003

Ten-year clinical laboratory follow-up after application of a symptom-based therapeutic strategy to patients with severe chronic aortic regurgitation of predominant rheumatic etiology.

Flávio Tarasoutchi; Max Grinberg; Guilherme Sobreira Spina; Roney Orismar Sampaio; L.uís F. Cardoso; Eduardo Giusti Rossi; Pablo Maria Alberto Pomerantzeff; Francisco R.M. Laurindo; Protásio Lemos da Luz; José Antonio Franchini Ramires

OBJECTIVES This study was designed to assess the feasibility and the long-term results of a symptom-based strategy of aortic valve replacement in a Brazilian population with predominant rheumatic etiology. BACKGROUND Optimal criteria for valve replacement in aortic regurgitation (AR) are still not entirely clear. The appearance of symptoms is an indication for surgery, but may be associated with myocardial damage. Although cardiac imaging data have provided a safer guide for such decisions, the use of symptom-based surgical indication has not been validated and might conceivably be better in populations with predominant rheumatic etiology and younger age. METHODS Echocardiography and rest-exercise radionuclide ventriculography were performed in 75 patients with severe AR, age 28 +/- 9 years, over a period of 10 +/- 0.69 years. Thirty-seven patients developed symptoms and underwent aortic valve replacement surgery within six months. Thirty-eight patients remained asymptomatic and were managed medically. RESULTS Survival was 100% in asymptomatic patients and 82% in symptomatic. Surgical treatment caused marked ventricular remodeling, with ventricular diameter involution and an improvement of rest-exercise ejection fraction percent variation. Multivariate analysis showed that the probability of developing symptoms within 10 years was 58% for a patient with a left ventricular end-diastolic diameter > or =70 mm and 76% for a patient with left ventricular end-systolic (LVESD) > or =50 mm. Logistic regression identified LVESD and age as the most predictive and specific, but not sensitive, indicators of symptom development. CONCLUSIONS Application of a standardized therapeutic strategy to patients with severe AR and predominant rheumatic etiology resulted in 90.6% survival after 10 years of follow-up.


Methods in Enzymology | 2008

Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products.

Francisco R.M. Laurindo; Denise C. Fernandes; Celio X.C. Santos

Assessment of low-level superoxide in nonphagocytic cells is crucial for assessing redox-dependent signaling pathways and the role of enzymes such as the NADPH oxidase complex. However, most superoxide probes present inherent limitations. Particularly, assessment of dihydroethidium (DHE) fluorescence is limited regarding a lack of possible quantification and simultaneous detection of its two main products: 2-hydroxyethidium, more specific for superoxide, and ethidium, which reflects H2O2-dependent pathways involving metal proteins. HPLC separation and analysis of those two main products have been described. This chapter reports procedures used for the validation of superoxide measurements in vascular system. Superoxide assessment was performed for cultured cells and tissue fragments incubated with DHE, followed by acetonitrile extraction and HPLC run, with simultaneous fluorescence detection of 2-hydroxyethidium and ethidium and ultraviolet detection of remaining DHE. It also describes procedures for DHE-based NADPH oxidase activity assays using HPLC or fluorometry. Such methods can enhance accuracy and allow better quantitation of vascular superoxide measurements.


Cardiovascular Research | 2010

Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes

Maria Alicia Carrillo-Sepulveda; Graziela S. Ceravolo; Zuleica B. Fortes; Maria Helena C. Carvalho; Rita C. Tostes; Francisco R.M. Laurindo; R. Clinton Webb; Maria Luiza M. Barreto-Chaves

AIMS Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. METHODS AND RESULTS NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO2-) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 microM). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. CONCLUSION Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.

Collaboration


Dive into the Francisco R.M. Laurindo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Debbas

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge