Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Rodriguez-Valera is active.

Publication


Featured researches published by Francisco Rodriguez-Valera.


Nature | 2001

Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton

Purificación López-García; Francisco Rodriguez-Valera; Carlos Pedrós-Alió; David Moreira

Phylogenetic information from ribosomal RNA genes directly amplified from the environment changed our view of the biosphere, revealing an extraordinary diversity of previously undetected prokaryotic lineages. Using ribosomal RNA genes from marine picoplankton, several new groups of bacteria and archaea have been identified, some of which are abundant. Little is known, however, about the diversity of the smallest planktonic eukaryotes, and available information in general concerns the phytoplankton of the euphotic region. Here we recover eukaryotes in the size fraction 0.2–5 µm from the aphotic zone (250–3,000 m deep) in the Antarctic polar front. The most diverse and relatively abundant were two new groups of alveolate sequences, related to dinoflagellates that are found at all studied depths. These may be important components of the microbial community in the deep ocean. Their phylogenetic position suggests a radiation early in the evolution of alveolates.


Microbiology | 1982

Numerical taxonomy of moderately halophilic Gram-negative rods

Antonio Ventosa; Emilia Quesada; Francisco Rodriguez-Valera; F. Ruiz-Berraquero; A. Ramos-Cormenzana

Summary: A study was made of 516 randomly selected isolates of moderately halophilic bacteria from solar salterns showing salinities between 8.8 and 40.0% (w/v) total salts, located in S.E. Spain. After purification, many cytological, physiological, biochemical, nutritional and antibiotic sensitivity characters were determined for 106 selected saltern isolates and two reference strains. Data were coded and analysed by numerical techniques using the Jaccard coefficient (S j), and clusters of strains were obtained by average linkage (UPGMA) analysis. Nine major phenons were found at the 72.5% similarity level. The properties of each phenon are given, their taxonomic affinities are discussed, and typical reference strains are suggested. Almost all the strains were related to genera known to contain marine species. A large number of the strains could be tentatively assigned to the genus Vibrio, suggesting that this may be an abundant taxon of moderately halophilic Gram-negative rods in solar salterns.


Journal of Clinical Microbiology | 2005

Development of a Multilocus Sequence Typing Scheme for Characterization of Clinical Isolates of Acinetobacter baumannii

Sergio Galán Bartual; Harald Seifert; C. Hippler; M. A. D. Luzon; Hilmar Wisplinghoff; Francisco Rodriguez-Valera

ABSTRACT In this study a multilocus sequence typing (MLST) scheme for Acinetobacter baumannii was developed and evaluated by using 40 clinical A. baumannii isolates recovered from outbreaks in Spanish and German hospitals during the years 1990 to 2001, as well as isolates from other European hospitals and two DSMZ reference strains of A. baumannii. For comparison, two isolates of Acinetobacter species 13 (sensu Tjernberg and Ursing), two clinical isolates, and three DSMZ strains of A. calcoaceticus (both belonging to the A. calcoaceticus-A. baumannii complex) were also investigated. Primers were designed for conserved regions of housekeeping genes, and 305- to 513-bp internal fragments of seven such genes—gltA, gyrB, gdhB, recA, cpn60, gpi, and rpoD—were sequenced for all strains. The number of alleles at individual loci ranged from 6 to 12, and a total of 20 allelic profiles or sequence types were distinguished among the investigated A. baumannii strains. The MLST data were in high concordance with the epidemiologic typing results generated by pulsed-field gel electrophoresis and amplified fragment length polymorphism fingerprinting. The MLST scheme provides a high level of resolution and an excellent tool for studying the population structure and long-term epidemiology of A. baumannii.


Nature Reviews Microbiology | 2009

Explaining microbial population genomics through phage predation

Francisco Rodriguez-Valera; Ana-Belen Martin-Cuadrado; Beltran Rodriguez-Brito; Lejla Paši cacute; T. Frede Thingstad; Forest Rohwer; Alex Mira

The remarkable differences that have been detected by metagenomics in the genomes of strains of the same bacterial species are difficult to reconcile with the widely accepted paradigm that periodic selection within bacterial populations will regularly purge genomic diversity by clonal replacement. We have found that many of the genes that differ between strains affect regions that are potential phage recognition targets. We therefore propose the constant-diversity dynamics model, in which the diversity of prokaryotic populations is preserved by phage predation. We provide supporting evidence for this model from metagenomics, mathematical analysis and computer simulations. Periodic selection and phage predation dynamics are not mutually exclusive; we compare their predictions to shed light on the ecological circumstances under which each type of dynamics could predominate.


The ISME Journal | 2010

Viral and microbial community dynamics in four aquatic environments.

Beltran Rodriguez-Brito; Linlin Li; Linda Wegley; Mike Furlan; Florent E. Angly; Mya Breitbart; John Buchanan; Christelle Desnues; Elizabeth A. Dinsdale; Robert Edwards; Ben Felts; Matthew Haynes; Hong Liu; David A. Lipson; Joseph M. Mahaffy; Anna Belen Martin-Cuadrado; Alex Mira; Jim Nulton; Lejla Pašić; Steve Rayhawk; Jennifer Rodriguez-Mueller; Francisco Rodriguez-Valera; Peter Salamon; Shailaja Srinagesh; Tron Frede Thingstad; Tuong Tran; Rebecca Vega Thurber; Dana Willner; Merry Youle; Forest Rohwer

The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral–microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.


Systematic and Applied Microbiology | 1986

Classification of Non-alkaliphilic Halobacteria Based on Numerical Taxonomy and Polar Lipid Composition, and Description of Haloarcula gen. nov. and Haloferax gen. nov.

Marina Torreblanca; Francisco Rodriguez-Valera; Guadalupe Juez; Antonio Ventosa; Masahiro Kamekura; M. Kates

Summary A large number of halobacteria have been isolated from different hypersaline environments at different geographical sites and studied together with type culture collection strains with respect to several phenotypic features. Numerical processing of the data resulted in thirteen phenons. A representative of each was studied to determine its polar lipid composition. Our results show the existence of at least three groups with the taxonomic level of genus. Results obtained by other authors with regard to the genotypic relationships among halobacteria support this. Besides the existing genus Halobacterium we propose the two new genera Haloarcula and Haloferax for the nomenclatural accomodation of the three groups.


Applied and Environmental Microbiology | 2000

Extremely Halophilic Bacteria in Crystallizer Ponds from Solar Salterns

Josefa Antón; Ramon Rosselló-Móra; Francisco Rodriguez-Valera; Rudolf Amann

ABSTRACT It is generally assumed that hypersaline environments with sodium chloride concentrations close to saturation are dominated by halophilic members of the domain Archaea, while Bacteriaare not considered to be relevant in this kind of environment. Here, we report the high abundance and growth of a new group of hitherto-uncultured Bacteria in crystallizer ponds (salinity, from 30 to 37%) from multipond solar salterns. In the present study, these Bacteria constituted from 5 to 25% of the total prokaryotic community and were affiliated with theCytophaga-Flavobacterium-Bacteroides phylum. Growth was demonstrated in saturated NaCl. A provisional classification of this new bacterial group as “Candidatus Salinibacter gen. nov.” is proposed. The perception that Archaea are the only ecologically relevant prokaryotes in hypersaline aquatic environments should be revised.


BMC Genomics | 2006

The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity

Henk Bolhuis; Peter Palm; Andy Wende; Michaela Falb; Markus Rampp; Francisco Rodriguez-Valera; Friedhelm Pfeiffer; Dieter Oesterhelt

BackgroundThe square halophilic archaeon Haloquadratum walsbyi dominates NaCl-saturated and MgCl2 enriched aquatic ecosystems, which imposes a serious desiccation stress, caused by the extremely low water activity. The genome sequence was analyzed and physiological and physical experiments were carried out in order to reveal how H. walsbyi has specialized into its narrow and hostile ecological niche and found ways to cope with the desiccation stress.ResultsA rich repertoire of proteins involved in phosphate metabolism, phototrophic growth and extracellular protective polymers, including the largest archaeal protein (9159 amino acids), a homolog to eukaryotic mucins, are amongst the most outstanding features. A relatively low GC content (47.9%), 15–20% less than in other halophilic archaea, and one of the lowest coding densities (76.5%) known for prokaryotes might be an indication for the specialization in its unique environmentConclusionAlthough no direct genetic indication was found that can explain how this peculiar organism retains its square shape, the genome revealed several unique adaptive traits that allow this organism to thrive in its specific and extreme niche.


Microbial Ecology | 1981

Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations.

Francisco Rodriguez-Valera; F. Ruiz-Berraquero; A. Ramos-Cormenzana

Solar salterns, based on a multi-pond system, give a discontinuous gradient of salt concentrations. The heterotrophic bacterial populations of ponds containing from 10% salt to saturation have been studied. Saltern samples were spread on agar plates containing different media for halophilic bacteria and one medium made with water of the pond plus nutrients. Replica plating was done to determine the salt range for growth of the colonies. We studied 150 strains to determine the salt spectra of growth, the morphology, and nutrient requirements. The following conclusions were reached: (a) In salt concentrations above 10% (total salts), most bacteria are halophilic and few are halotolerant; (b) the two types of halophilic bacteria, moderate and extreme, show different distributions; in these ponds a narrow overlap exists between 25% and 32% salts with moderate halophiles predominating below this interval and extreme halophiles above it; (c) the populations of moderate halophiles are highly heterogeneous, and the salt concentration of their habitat affects their taxonomic composition, salt range for growth, and nutrient requirements. The population composition of extreme halophiles is less affected by the salt concentrations at which these bacteria are found.


PLOS ONE | 2007

Metagenomics of the deep Mediterranean, a warm bathypelagic habitat.

Ana-Belen Martin-Cuadrado; Purificación López-García; Juan-Carlos Alba; David Moreira; Luis Monticelli; Axel Strittmatter; Gerhard Gottschalk; Francisco Rodriguez-Valera

Background Metagenomics is emerging as a powerful method to study the function and physiology of the unexplored microbial biosphere, and is causing us to re-evaluate basic precepts of microbial ecology and evolution. Most marine metagenomic analyses have been nearly exclusively devoted to photic waters. Methodology/Principal Findings We constructed a metagenomic fosmid library from 3,000 m-deep Mediterranean plankton, which is much warmer (∼14°C) than waters of similar depth in open oceans (∼2°C). We analyzed the library both by phylogenetic screening based on 16S rRNA gene amplification from clone pools and by sequencing both insert extremities of ca. 5,000 fosmids. Genome recruitment strategies showed that the majority of high scoring pairs corresponded to genomes from Rhizobiales within the Alphaproteobacteria, Cenarchaeum symbiosum, Planctomycetes, Acidobacteria, Chloroflexi and Gammaproteobacteria. We have found a community structure similar to that found in the aphotic zone of the Pacific. However, the similarities were significantly higher to the mesopelagic (500–700 m deep) in the Pacific than to the single 4000 m deep sample studied at this location. Metabolic genes were mostly related to catabolism, transport and degradation of complex organic molecules, in agreement with a prevalent heterotrophic lifestyle for deep-sea microbes. However, we observed a high percentage of genes encoding dehydrogenases and, among them, cox genes, suggesting that aerobic carbon monoxide oxidation may be important in the deep ocean as an additional energy source. Conclusions/Significance The comparison of metagenomic libraries from the deep Mediterranean and the Pacific ALOHA water column showed that bathypelagic Mediterranean communities resemble more mesopelagic communities in the Pacific, and suggests that, in the absence of light, temperature is a major stratifying factor in the oceanic water column, overriding pressure at least over 4000 m deep. Several chemolithotrophic metabolic pathways could supplement organic matter degradation in this most depleted habitat.

Collaboration


Dive into the Francisco Rodriguez-Valera's collaboration.

Top Co-Authors

Avatar

Rohit Ghai

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Mario López-Pérez

Universidad Miguel Hernández de Elche

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Megumi Mizuno

Universidad Miguel Hernández de Elche

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge