Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Salinas is active.

Publication


Featured researches published by Francisco Salinas.


Genome Research | 2011

Revealing the genetic structure of a trait by sequencing a population under selection

Leopold Parts; Francisco A. Cubillos; Jonas Warringer; Kanika Jain; Francisco Salinas; Suzannah Bumpstead; Mikael Molin; Amin Zia; Jared T. Simpson; Michael A. Quail; Alan M. Moses; Edward J. Louis; Richard Durbin; Gianni Liti

One approach to understanding the genetic basis of traits is to study their pattern of inheritance among offspring of phenotypically different parents. Previously, such analysis has been limited by low mapping resolution, high labor costs, and large sample size requirements for detecting modest effects. Here, we present a novel approach to map trait loci using artificial selection. First, we generated populations of 10-100 million haploid and diploid segregants by crossing two budding yeast strains of different heat tolerance for up to 12 generations. We then subjected these large segregant pools to heat stress for up to 12 d, enriching for beneficial alleles. Finally, we sequenced total DNA from the pools before and during selection to measure the changes in parental allele frequency. We mapped 21 intervals with significant changes in genetic background in response to selection, which is several times more than found with traditional linkage methods. Nine of these regions contained two or fewer genes, yielding much higher resolution than previous genomic linkage studies. Multiple members of the RAS/cAMP signaling pathway were implicated, along with genes previously not annotated with heat stress response function. Surprisingly, at most selected loci, allele frequencies stopped changing before the end of the selection experiment, but alleles did not become fixed. Furthermore, we were able to detect the same set of trait loci in a population of diploid individuals with similar power and resolution, and observed primarily additive effects, similar to what is seen for complex trait genetics in other diploid organisms such as humans.


Molecular Biology and Evolution | 2014

A high-definition view of functional genetic variation from natural yeast genomes

Anders Bergström; Jared T. Simpson; Francisco Salinas; Benjamin Barré; Leopold Parts; Amin Zia; Alex N. Nguyen Ba; Alan M. Moses; Edward J. Louis; Ville Mustonen; Jonas Warringer; Richard Durbin; Gianni Liti

The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies.


Genetics | 2013

High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population

Francisco A. Cubillos; Leopold Parts; Francisco Salinas; Anders Bergström; Eugenio Scovacricchi; Amin Zia; Christopher J. R. Illingworth; Ville Mustonen; Sebastian Ibstedt; Jonas Warringer; Edward J. Louis; Richard Durbin; Gianni Liti

A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup, and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker’s yeast from a multiparent 12th generation intercross. We selected four representative founder strains to produce the Saccharomyces Genome Resequencing Project (SGRP)-4X mapping population and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite, and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools, respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects and complex allelic series at a locus. SGRP-4X is a deeply characterized resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes and serves as a test bed for testing avenues to attack human complex traits.


PLOS ONE | 2012

The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae

Francisco Salinas; Francisco A. Cubillos; Daniela Soto; Verónica García; Anders Bergström; Jonas Warringer; M. Angélica Ganga; Edward J. Louis; Gianni Liti; Claudio Martínez

Saccharomyces cerevisiae is the main microorganism responsible for wine alcoholic fermentation. The oenological phenotypes resulting from fermentation, such as the production of acetic acid, glycerol, and residual sugar concentration are regulated by multiple genes and vary quantitatively between different strain backgrounds. With the aim of identifying the quantitative trait loci (QTLs) that regulate oenological phenotypes, we performed linkage analysis using three crosses between highly diverged S. cerevisiae strains. Segregants from each cross were used as starter cultures for 20-day fermentations, in synthetic wine must, to simulate actual winemaking conditions. Linkage analysis on phenotypes of primary industrial importance resulted in the mapping of 18 QTLs. We tested 18 candidate genes, by reciprocal hemizygosity, for their contribution to the observed phenotypic variation, and validated five genes and the chromosome II right subtelomeric region. We observed that genes involved in mitochondrial metabolism, sugar transport, nitrogen metabolism, and the uncharacterized ORF YJR030W explained most of the phenotypic variation in oenological traits. Furthermore, we experimentally validated an exceptionally strong epistatic interaction resulting in high level of succinic acid between the Sake FLX1 allele and the Wine/European MDH2 allele. Overall, our work demonstrates the complex genetic basis underlying wine traits, including natural allelic variation, antagonistic linked QTLs and complex epistatic interactions between alleles from strains with different evolutionary histories.


PLOS ONE | 2014

Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts

Matías Jara; Francisco A. Cubillos; Verónica García; Francisco Salinas; Omayra Aguilera; Gianni Liti; Claudio Martínez

Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.


Molecular Biology and Evolution | 2015

Concerted Evolution of Life Stage Performances Signals Recent Selection on Yeast Nitrogen Use

Sebastian Ibstedt; Simon Stenberg; Sara Bages; Arne B. Gjuvsland; Francisco Salinas; Olga Kourtchenko; Jeevan Karloss Antony Samy; Anders Blomberg; Stig W. Omholt; Gianni Liti; Gemma Beltran; Jonas Warringer

Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organisms life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection.


PLOS Genetics | 2016

Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion

Raphaelle Laureau; Sophie Loeillet; Francisco Salinas; Anders Bergström; Patricia Legoix-Né; Gianni Liti; Alain Nicolas

In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG). Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH) events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs) in diploid strains without undergoing sexual reproduction.


Nature Communications | 2016

Powerful decomposition of complex traits in a diploid model

Johan Hallin; Kaspar Märtens; Alexander I. Young; Martin Zackrisson; Francisco Salinas; Leopold Parts; Jonas Warringer; Gianni Liti

Explaining trait differences between individuals is a core and challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We sequence and systematically pair the recombinant gametes of two intercrossed natural genomes into an array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of this approach by partitioning fitness traits of 6,642 Saccharomyces cerevisiae POLs across many environments, achieving near complete trait heritability and precisely estimating additive (73%), dominance (10%), second (7%) and third (1.7%) order epistasis components. We map quantitative trait loci (QTLs) and find nonadditive QTLs to outnumber (3:1) additive loci, dominant contributions to heterosis to outnumber overdominant, and extensive pleiotropy. The POL framework offers the most complete decomposition of diploid traits to date and can be adapted to most model organisms.


PLOS ONE | 2015

ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.

Gema López-Martínez; Mar Margalef-Català; Francisco Salinas; Gianni Liti; Ricardo Cordero-Otero

Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.


bioRxiv | 2016

Powerful decomposition of complex traits in a diploid model using Phased Outbred Lines

Johan Hallin; Kaspar Märtens; Alexander I. Young; Martin Zackrisson; Francisco Salinas; Leopold Parts; Jonas Warringer; Gianni Liti

Explaining trait differences between individuals is a core but challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We intercross two natural genomes over many sexual generations, sequence and systematically pair the recombinant gametes into a large array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of the framework by partitioning fitness traits of 7310 yeast POLs across many environments, achieving near complete trait heritability (mean H2 = 91%) and precisely estimating additive (74%), dominance (8%), second (9%) and third (1.8%) order epistasis components. We found nonadditive quantitative trait loci (QTLs) to outnumber (3:1) but to be weaker than additive loci; dominant contributions to heterosis to outnumber overdominant (3:1); and pleiotropy to be the rule rather than the exception. The POL approach presented here offers the most complete decomposition of diploid traits to date and can be adapted to most model organisms.

Collaboration


Dive into the Francisco Salinas's collaboration.

Top Co-Authors

Avatar

Gianni Liti

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Bergström

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Leopold Parts

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ville Mustonen

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Johan Hallin

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Richard Durbin

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander I. Young

Wellcome Trust Centre for Human Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge