Francisco Velazquez
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Velazquez.
ACS Medicinal Chemistry Letters | 2010
Ashok Arasappan; Frank Bennett; Stephane L. Bogen; Srikanth Venkatraman; Melissa Blackman; Kevin X. Chen; Siska Hendrata; Yuhua Huang; Regina Huelgas; Latha G. Nair; Angela I. Padilla; Weidong Pan; Russell E. Pike; Patrick A. Pinto; Sumei Ruan; Mousumi Sannigrahi; Francisco Velazquez; Bancha Vibulbhan; Wanli Wu; Weiying Yang; Anil K. Saksena; Viyyoor M. Girijavallabhan; Neng-Yang Shih; Jianshe Kong; Tao Meng; Yan Jin; Jesse Wong; Paul McNamara; Andrew Prongay; Vincent S. Madison
Boceprevir (SCH 503034), 1, a novel HCV NS3 serine protease inhibitor discovered in our laboratories, is currently undergoing phase III clinical trials. Detailed investigations toward a second generation protease inhibitor culminated in the discovery of narlaprevir (SCH 900518), 37, with improved potency (∼10-fold over 1), pharmacokinetic profile and physicochemical characteristics, currently in phase II human trials. Exploration of synthetic sequence for preparation of 37 resulted in a route that required no silica gel purification for the entire synthesis.
Journal of Medicinal Chemistry | 2009
Srikanth Venkatraman; Francisco Velazquez; Wu W; Melissa Blackman; Kevin X. Chen; Stephane L. Bogen; Latha G. Nair; Xiao Tong; Robert Chase; Hart A; Sony Agrawal; John Pichardo; Andrew Prongay; Kuo-Chi Cheng; Girijavallabhan; John J. Piwinski; Neng-Yang Shih; Njoroge Fg
Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, and affects more than 200 million people worldwide. Although combination therapy of interferon-alpha and ribavirin is reasonably successful in treating majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of a series of ketoamide derived P(1)-P(3) macrocyclic inhibitors that are more potent than the first generation clinical candidate, boceprevir (1, Sch 503034), is discussed. The optimization of these macrocyclic inhibitors identified a P(3) imide capped analogue 52 that was 20 times more potent than 1 and demonstrated good oral pharmacokinetics in rats. X-ray structure of 52 bound to NS3 protease and biological data are also discussed.
Journal of Medicinal Chemistry | 2010
Francisco Velazquez; Mousumi Sannigrahi; Frank Bennett; Raymond G. Lovey; Ashok Arasappan; Stephane L. Bogen; Latha G. Nair; Srikanth Venkatraman; Melissa Blackman; Siska Hendrata; Yuhua Huang; Regina Huelgas; Patrick A. Pinto; Kuo-Chi Cheng; Xiao Tong; Andrew T. McPhail; F. George Njoroge
HCV infection affects more than 170 million people worldwide and many of those patients will reach the end stage complications of the disease which include hepatocarcinoma and liver failure. The success rate for treatment of patients infected with genotype-1 is about 40%. Therefore, novel treatments are needed to combat the infection. The HCV NS3 protease inhibitor Boceprevir (1) was reported by our research group and efforts continue for the discovery of more potent compounds with improved pharmacokinetic profiles. A new series of HCV NS3 protease inhibitors having a cyclic sulfone P3-cap have been discovered. Compounds 43 and 44 showed K(i)* values in the single-digit nM range and their cellular potency was improved by 10-fold compared to 1. The pharmacokinetic profiles of 43 and 44 in rats and monkeys were also improved to achieve higher plasma levels after oral administration.
Journal of Medicinal Chemistry | 2012
Kevin X. Chen; Charles A. Lesburg; Bancha Vibulbhan; Weiying Yang; T.Y Chan; Srikanth Venkatraman; Francisco Velazquez; Zeng Q; Frank Bennett; G.N Anilkumar; J Duca; Y Jiang; Patrick A. Pinto; Wang L; Yuhua Huang; Oleg Selyutin; S Gavalas; Pu H; S Agrawal; Feld B; Huang Hc; Cheng Li; Kuo-Chi Cheng; Neng-Yang Shih; Joseph A. Kozlowski; Stuart B. Rosenblum; Njoroge Fg
Starting from indole-based C-3 pyridone HCV NS5B polymerase inhibitor 2, structure-activity relationship (SAR) investigations of the indole N-1 benzyl moiety were performed. This study led to the discovery of irreversible inhibitors with p-fluoro-sulfone- or p-fluoro-nitro-substituted N-1 benzyl groups which achieved breakthrough replicon assay potency (EC(50) = 1 nM). The formation of a covalent bond with adjacent cysteine-366 thiol was was proved by mass spectroscopy and X-ray crystal structure studies. The C-5 ethyl C-2 carboxylic acid derivative 47 had an excellent oral area-under-the-curve (AUC) of 18 μM·h (10 mg/kg). Its oral exposure in monkeys and dogs was also very good. The NMR ALARM assay, mass spectroscopy experiments, in vitro counter screening, and toxicology assays demonstrated that the covalent bond formation between compound 47 and the protein was highly selective and specific. The overall excellent profile of 47 made it an interesting candidate for further investigation.
Journal of Medicinal Chemistry | 2009
Francisco Velazquez; Srikanth Venkatraman; Melissa Blackman; Patrick A. Pinto; Stephane L. Bogen; Mousumi Sannigrahi; Kevin Chen; John Pichardo; Andrea Hart; Xiao Tong; Viyyoor M. Girijavallabhan; F. George Njoroge
HCV infection is considered a silent epidemic because most people infected do not develop acute symptoms. Instead, the disease progresses to a chronic state leading to cirrhosis and hepatocarcinoma. Novel therapies are needed to combat this major health threat. The HCV NS3 serine protease has been the target of continuous investigation because of its pivotal role in viral replication. Herein, we present the P1-P3 macrocyclization approach followed for identification of HCV NS3 inhibitors as potential backup candidates to our first generation drug candidate, Sch 503034 (1). Different P1-P3 linkers were investigated to identify novel macrocyclic scaffolds. SAR exploration of P3-caps in the macrocyclic cores allowed the identification of l-serine derived macrocycle 32 (Ki* = 3 nM, EC90 = 30 nM) and allo-threonine derived macrocycle 36 (Ki* = 3 nM, EC90 = 30 nM) as potent HCV NS3 protease inhibitors.
Journal of Molecular Catalysis B-enzymatic | 2003
Horacio F. Olivo; Tonya L. Peeples; Marı́a-Yolanda Rı́os; Francisco Velazquez; Jin-Woo Kim; Someet Narang
Abstract N -Substituted 7-azanorbornanes were prepared by acylation of easily accessible 7-azanorbornane hydrochloride. Derivatives possessing an electron-withdrawing docking/protecting group and bearing an aryl methylether were subjected to biotransformation with the fungus Beauveria bassiana ATCC 7159. O -Demethylation and β-4- O -methylglucosidation reactions were observed for the major metabolite in this biotransformation (isolation yields: 6 , 30%; 11a , 44%; 11b , 47%; 11c , 14%). C -Hydroxylation on an unfunctionalized carbon was also observed in most of the cases.
ACS Medicinal Chemistry Letters | 2016
Santhosh Francis Neelamkavil; Sony Agrawal; Thomas Bara; Chad E. Bennett; Sathesh Bhat; Dipshikha Biswas; Linda Brockunier; Nicole Buist; Duane Burnette; Mark Cartwright; Samuel Chackalamannil; Robert Chase; Mariappan V. Chelliah; Austin Chen; Martin C. Clasby; Vincent J. Colandrea; Ian W. Davies; Keith Eagen; Zhuyan Guo; Yongxin Han; John A. Howe; Charles Lee Jayne; Hubert Josien; Stacia Kargman; Karen Marcantonio; Shouwu Miao; Randy R. Miller; Andrew Nolting; Patrick A. Pinto; Murali Rajagopalan
We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing. One of the key elements in this effort was the spirocyclization of the P2 quinoline group, which rigidified and constrained the binding conformation to provide a novel core. A second focus of the team was also to improve the activity against genotype 3a and the key mutant variants of genotype 1b. The rational application of structural chemistry with molecular modeling guided the design and optimization of the structure-activity relationships have resulted in the identification of the clinical candidate MK-8831 with excellent pan-genotypic activity and safety profile.
Tetrahedron | 2003
Marı́a-Yolanda Rı́os; Francisco Velazquez; Horacio F. Olivo
Abstract The C1–C9 northern fragment of aurisides 12a was prepared in eight steps and 41% overall yield starting from Griecos bicyclic lactone (+)-4 . The synthesis features a key stereoselective Meinwald reaction of the lithium enolate of alkyl propionate with the functionalized δ-lactone 3 .
ACS Medicinal Chemistry Letters | 2014
Unmesh G. Shah; Charles Lee Jayne; Samuel Chackalamannil; Francisco Velazquez; Zhuyan Guo; Alexei V. Buevich; John A. Howe; Robert Chase; Aileen Soriano; Sony Agrawal; Michael T. Rudd; John A. McCauley; Nigel J. Liverton; Joseph J. Romano; Kimberly J. Bush; Paul J. Coleman; Christiane Grisé-Bard; Marie-Christine Brochu; Sylvie Charron; Virender Aulakh; Benoit Bachand; Patrick Beaulieu; Helmi Zaghdane; Sathesh Bhat; Yongxin Han; Joseph P. Vacca; Ian W. Davies; Ann E. Weber; Srikanth Venkatraman
We have previously reported the discovery of our P2-P4 macrocyclic HCV NS3/4a protease inhibitor MK-5172, which in combination with the NS5a inhibitor MK-8742 recently received a breakthrough therapy designation from the US FDA for treatment of chronic HCV infection. Our goal for the next generation NS3/4a inhibitor was to achieve pan-genotypic activity while retaining the pharmacokinetic profile of MK-5172. One of the areas for follow-up investigation involved replacement of the quinoxaline moiety in MK-5172 with a quinoline and studying the effect of substitution at 4-position of the quinoline. The rationale for this effort was based on molecular modeling, which indicated that such modifications would improve interactions with the S2 subsite, in particular with D79. We wish to report herein the discovery of highly potent inhibitors with pan-genotypic activity and an improved profile over MK-5172, especially against gt-3a and A156 mutants.
ACS Medicinal Chemistry Letters | 2017
Gregory L. Adams; Francisco Velazquez; Charles Lee Jayne; Unmesh G. Shah; Shouwu Miao; Eric R. Ashley; Maria Madeira; Taro E. Akiyama; Jerry Di Salvo; Takao Suzuki; Nengxue Wang; Quang Truong; Eric J. Gilbert; Dan Zhou; Andreas Verras; Melissa Kirkland; Michele Pachanski; Maryann Powles; Wu Yin; Feroze Ujjainwalla; Srikanth Venkatraman; Scott D. Edmondson
GPR120 (FFAR4) is a fatty acid sensing G protein coupled receptor (GPCR) that has been identified as a target for possible treatment of type 2 diabetes. A selective activator of GPR120 containing a chromane scaffold has been designed, synthesized, and evaluated in vivo. Results of these efforts suggest that chromane propionic acid 18 is a suitable tool molecule for further animal studies. Compound 18 is selective over the closely related target GPR40 (FFAR1), has a clean off-target profile, demonstrates suitable pharmacokinetic properties, and has been evaluated in wild-type/knockout GPR120 mouse oGTT studies.