Franciska Könczöl
University of Pécs
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franciska Könczöl.
FEBS Letters | 1998
Franciska Könczöl; D. Lőrinczy; Joseph Belagyi
Experiments were performed on glycerol‐extracted muscle fibres prepared from psoas muscle of rabbit in the presence of hydroxyl free radical generating system. Short irradiation of spin‐labelled muscle fibres by UV light showed the interaction of probe molecules with oxygen free radicals. The intensity of the EPR signal from maleimide or isothiocyanate spin labels attached to the essential thiol groups decreased following irradiation. Oxygen free radicals affected the rate constant of the transition AM.ADP.Vi→AM.ADP in the ATP hydrolysis cycle. It was found that the essential –SH groups of myosin were involved in the oxidation of sulphydryls by Ce(IV). Ce(IV) complexed to nitrilotriacetic acid in the presence of spin trap produced long‐lived free radicals located partly on SH‐1 sulphydryls.
BMC Structural Biology | 2007
Timea Dergez; D. Lőrinczy; Franciska Könczöl; Nelli Farkas; Joseph Belagyi
BackgroundThermal denaturation experiments were extended to study the thermal behaviour of the main motor proteins (actin and myosin) in their native environment in striated muscle fibres. The interaction of actin with myosin in the highly organized muscle structure is affected by internal forces; therefore their altered conformation and interaction may differ from those obtained in solution. The energetics of long functioning intermediate states of ATP hydrolysis cycle was studied in muscle fibres by differential scanning calorimetry (DSC).ResultsSETARAM Micro DSC-II was used to monitor the thermal denaturation of the fibre system in rigor and in the presence of nucleotide and nucleotide analogues. The AM.ADP.Pi state of the ATP hydrolysis cycle has a very short lifetime therefore, we mimicked the different intermediate states with AMP.PNP and/or inorganic phosphate analogues Vi and AlF4 or BeFx. Studying glycerol-extracted muscle fibres from the rabbit psoas muscle by DSC, three characteristic thermal transitions were detected in rigor. The thermal transitions can be assigned to myosin heads, myosin rods and actin with transition temperatures (Tm) of 52.9 ± 0.7°C, 57.9 ± 0.7°C, 63.7 ± 1.0°C. In different intermediate states of the ATP hydrolysis mimicked by nucleotide analogues a fourth thermal transition was also detected which is very likely connected with nucleotide binding domain of myosin and/or actin filaments. This transition temperature Tm4 depended on the mimicked intermediate states, and varied in the range of 66°C – 77°C.ConclusionAccording to DSC measurements, strongly and weakly binding states of myosin to actin were significantly different. In the presence of ADP only a moderate change of the DSC pattern was detected in comparison with rigor, whereas in ADP.Pi state trapped by Vi, AlF4 or BeFx a remarkable stabilization was detected on the myosin head and actin filament which is reflected in a 3.0 – 10.0°C shift in Tm to higher temperature. A similar effect was observed in the case of the nonhydrolyzable AMP.PNP analogue. Differential DSC measurements suggest that stabilization actin structure in the intermediate states of ATP hydrolysis may play an additional role in actin-myosin interaction.
Journal of Thermal Analysis and Calorimetry | 2014
Franciska Könczöl; N. Wiegand; L. G. Nöt; D. Lőrinczy
Polyneuropathy is defined as a simultaneous malfunction of several peripheral nerves, which could be a side effect of cancer therapy; however, this is reported to occur rarely and difficult to prove. The purpose of the study was to introduce for the first time the calorimetry in the diagnosis of neuropathy in an experimental animal model. The study was inspired by the forensic investigation of a 53-year-old cancer survival female patient, in whose case the development of polyneuropathy could have been caused by cyclophosphamide therapy. Adult guinea pigs were injected intraperitoneally with the dose of cyclophosphamide that comparable to the human dosage. Animals were euthanized; nerve and muscle samples were analyzed by a SETARAM Micro calorimeter. The denaturation temperatures were measured and the calorimetric enthalpies were calculated based on the areas under thermal absorption curves. The thermal denaturation of the samples decreased and the calorimetric enthalpy increased, depending on the therapeutic cyclophosphamide doses. The nerves were more sensitive to chemotherapy, compared to the muscles. The toxic effects of cyclophosphamide on peripheral nerves and muscles can be measured and analyzed by calorimetry, which effects were found dose dependent.
Thermochimica Acta | 2001
Dénes Lörinczy; Franciska Könczöl; L. Farkas; Joseph Belagyi; Christoph Schick
Abstract Differential scanning calorimetry (DSC) was used in conventional and temperature-modulated mode to study the energetics of myosin in skeletal muscle fibres in different states of the actomyosin ATPase cycle. Psoas muscle fibres from rabbit were used in the experiments with and without the presence of nucleotides (ATP, ADP, AMP–PNP) and ATP or ADP+orthovanadate. In the complex DSC pattern, the higher transition referred to the head region of myosin. The enthalpy of the thermal unfolding depended on the nucleotides, the conversion from a strongly attached state of myosin to actin to a weakly binding state was accompanied with an increase of the transition temperature which was due to the change of the affinity of nucleotide binding to myosin. This was more pronounced in TMDSC mode, indicating that the strong-binding state and rigor state differ energetically from each other. The different transition temperatures indicated alterations in the internal microstructure of myosin head region. The monoton decreasing TMDSC heat capacities show that the C p of biological samples should not be temperature independent.
International Journal of Legal Medicine | 2016
Evelin Rácz; Franciska Könczöl; Dénes Tóth; Zoltan Patonai; Zoltán Porpáczy; Zsolt Kozma; Viktor S. Poór; Katalin Sipos
Proper diagnosis in drowning victims is often difficult due to the lack of signs specific to drowning. The diatom test is a widely used procedure for the diagnosis. Some types of water contain only minimal amounts of diatom cells which may provide false-negative results, while a negative diatom test result does not exclude drowning. In proving drowning, we used a polymerase chain reaction (PCR)-based biological method in addition to the conventional methods. DNA was extracted from postmortem spleen tissues and water of the drowning site. Samples were tested with algae (diatoms and small green algae)- and cyanobacteria (blue-green algae)-specific primers. We present here multiple drowning cases in which diatom tests of the postmortem tissue samples and the water were negative. In each case, the presence of phytoplanktonic DNA strengthened the autopsy diagnosis of drowning even in the absence of visible diatoms. In the future, the PCR method may be of consideration as a possible supplement of the diatom test in the examination of presumed drowning cases.
Journal of Thermal Analysis and Calorimetry | 2013
Franciska Könczöl; József Belágyi; D. Lőrinczy
Actin is one of the important elements of the striated muscle that transmits force from the myosin filaments and as a part of the cytoskeleton plays an important role in shape determination of cells. It is a known experience that removal of the divalent cation affects the dynamic behaviour of actin in both forms. Paramagnetic probes and electron paramagnetic resonance (EPR) spectroscopy provide direct technique by which the rotation and the orientation of specifically labelled proteins can be followed during biochemical manipulations. The spectroscopic measurements could be combined with DSC measurements that report domain stability and interactions and allow the calculation of the thermodynamic parameters during the melting process. Actin was spin-labelled with maleimide or fluoro-dinitro proxyl probe molecules which are bound to the Cys-374 or Lys-61 residues of the smaller domain. EPR spectroscopy spectra were recorded in monomer form in Ca- and EGTA-state as a function of temperature up to the melting point. Similarly, DSC measurements were performed and analyzed using the kinetic theory. The measurements showed that removal of the divalent cation from the globular actin induced significant local and global structural change both in the thermodynamic properties and the rotational mobility of actin detected by DSC and EPR. On the basis of the results derived by deconvolution of the DSC pattern we can suggest a non-interactive two-domain melting for the monomer actin after removing the divalent cations.
Journal of Thermal Analysis and Calorimetry | 2001
D. Lőrinczy; Franciska Könczöl; L. Farkas; József Belágyi; Christoph Schick
Electron paramagnetic resonance (EPR, ST-EPR) and differential scanning calorimetry(DSC) were used in conventional and temperature modulated mode to study internal motions and energetics of myosin in skeletal muscle fibres in different states of the actomyosin ATPase cycle. Psoas muscle fibres from rabbit were spin-labelled with an isothiocyanate-based probe molecule at the reactive sulfhydryl site (Cys-707) of the catalytic domain of myosin. In the presence of nucleotides (ATP, ADP, AMP⋅PNP) and ATP or ADP plus orthovanadate, the conventional EPR spectra showed changes in the ordering of the probe molecules in fibres. In MgADP state a new distribution appeared; ATP plus orthovanadate increased the orientational disorder of myosin heads, a random population of spin labels was superimposed on the ADP-like spectrum.In the complex DSC pattern, higher transition referred to the head region of myosin. The enthalpy of the thermal unfolding depended on the nucleotides, the conversion from a strongly attached state of myosin to actin to a weakly binding state was accompanied with an increase of the transition temperature which was due to the change of the affinity of nucleotide binding to myosin. This was more pronounced in TMDSC mode, indicating that the strong-binding state and rigor state differ energetically from each other. The different transition temperatures indicated alterations in the internal microstructure of myosin head region The monoton decreasing TMDSC heat capacities show that Cp of biological samples should not be temperature independent.
Journal of Thermal Analysis and Calorimetry | 2012
K. Türmer; Franciska Könczöl; D. Lőrinczy; József Belágyi
Actin is the component of several biological systems and it plays important role in different biological processes, especially in cell motility. The actin-based motility is accompanied with ATP-consume, and the irreversible ATP hydrolysis is coupled with the polymerization of monomer actin into filamentous form. When an actin monomer is incorporated into a filament, the ATPase is activated, and thereby the polymer formation is promoted. The polymer formation and the ATP hydrolysis is associated with internal motions and significant changes of the conformation in reaction partners. In this article, the ATP nucleotide in monomer actin was exchanged by its non-hydrolyzable analogue adenylyl-imidodiphosphate (AMP.PNP), and using two biophysical methods, electron paramagnetic resonance spectroscopy (EPR) and differential scanning calorimetry (DSC), we studied the local and global changes in globular and fibrous actin following the nucleotide exchange. The paramagnetic probe molecule—a maleimide spin label—was attached to Cys-374 site of monomer actin, and its rotational mobility was derived at different temperature. In DSC measurements the transition temperatures of samples with different bound nucleotides were compared. From the measurements we could conclude, that the nucleotide exchange induces changes in the internal rigidity of the actin systems, AMP.PNP-actins showed longer rotational correlation time and increased thermal transition temperature.
Journal of Thermal Analysis and Calorimetry | 2001
M. Kiss; Franciska Könczöl; Nelli Farkas; D. Lőrinczy; József Belágyi
The effect of free radicals obtained in hydroxyl and cerium(IV)-nitrilotriacetic acid free radical generating systems on contractile proteins (actin, myosin and their complexes in glycerinated muscle fibres) was studied using differential scanning calorimetry and spin trapping electron paramagnetic resonance technique. The analysis of spectra showed that selective attack of thiol groups – Cys-257 and Cys-374 residues of actin, and among others Cys-707 residue of myosin – and random attack of sidechains of the main proteins of muscle tissue produced structural and functional changes, which affected the ATP hydrolysis cycle and very likely the dynamics of actin. The melting curves obtained on protein systems support the view that global conformational changes accompany the local damage of free radicals.
Thermochimica Acta | 2000
D. Lőrinczy; Franciska Könczöl; L. Farkas; B Gaszner; Joseph Belagyi
Abstract Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were used to study the motional dynamics and segmental flexibility of cardiac myosin in the presence of free radical generating system. Cardiac myosin isolated from calf heart muscle were spin-labelled with maleimide- and isothiocyanate-based probe molecules at the reactive sulfhydryl sites (Cys-707) of the motor domain. In the presence of hydroxyl free radicals the spectral intensity of the maleimide probe molecules attached to cardiac myosin decreased with time following a single exponential curve. MgADP and MgADP plus orthovanadate that produce flexibility changes in the multisubunit structure of myosin enhanced the reduction of the attached nitroxide molecules in free radical generating system. DSC measurements resulted in two main transitions at 49.4°C and 54.1°C, respectively. Addition of MgADP produced a decrease of 49.4°C transition, whereas a shift towards higher temperature was detected at 54.1°C transition. Hydroxyl free radicals induced further shifts of the transition temperatures and affected the width of the heat absorption curves. The total enthalpy of the UV irradiated myosin decreased significantly in different intermediate states of the ATP cycle.