Franck Chenu
University of Ottawa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franck Chenu.
Psychopharmacology | 2005
Benoit Petit-Demoulière; Franck Chenu; Michel Bourin
RationaleAmong all animal models, the forced swimming test (FST) remains one of the most used tools for screening antidepressants.ObjectiveThis paper reviews some of the main aspects of the FST in mice. Most of the sensitivity and variability factors that were assessed on the FST are summarized.MechanismsWe have summarized data found in the literature of antidepressant effects on the FST in mice. From this data set, we have extrapolated information on baseline levels of strain, and sensitivity against antidepressants.ResultsWe have shown that many parameters have to be considered in this test to gain good reliability. Moreover, there was a fundamental inter-strain difference of response in the FST.ConclusionsThe FST is a good screening tool with good reliability and predictive validity. Strain is one of the most important parameters to consider. Swiss and NMRI mice can be used to discriminate the mechanisms of action of drugs. CD-1 seems to be the most useful strain for screening purposes, but this needs to be confirmed with some spontaneous locomotor activity studies.
Fundamental & Clinical Pharmacology | 2004
Eric Dailly; Franck Chenu; Caroline E. Renard; Michel Bourin
The relationship between depression and dopamine deficiency in the mesolimbic pathway has been hypothesized for many years. The experimental studies with animal models of depression and the human studies implicate the role of the dopamine system in depression. Not only do dopaminergic receptor agonists, but also antagonists such as olanzapine exhibit antidepressant effects associated with standard antidepressants in patients with treatment‐resistant depression. This paradoxical result suggests that further investigations are necessary to understand the role played by dopamine in depression.
Behavioural Brain Research | 2005
Michel Bourin; Franck Chenu; Nadège Ripoll; Denis J. David
Interstrain mice variability in response to antidepressant drugs has been reported in the most commonly utilized behavioural animal models of depression: the tail suspension test (TST) and the forced swimming test (FST). The behaviour of mice was examined in both tests for screening various antidepressants with different biochemical mechanism of action. Previous studies have revealed that drug sensitivity depends on the strain and test used. Swiss mice is the most sensitive strain to detect serotonin and/or noradrenaline antidepressants whereas C57BL/6J was the only strain sensitive to bupropion (dopaminergic agent) using the FST. In the TST, all antidepressants studied decreased the immobility time in Swiss and C57BL/6J strains. Detection of an antidepressant-like activity could be performed using only one test (TST with Swiss mice or FST with Swiss and C57Bl/6 Rj mice), but both tests are necessary to conclude on the mechanism of action.
The International Journal of Neuropsychopharmacology | 2008
Bruno P. Guiard; Denis J. David; Thierry Deltheil; Franck Chenu; Erwan Le Maître; Thibault Renoir; Isabelle Leroux-Nicollet; Pierre Sokoloff; Laurence Lanfumey; Michel Hamon; Anne M. Andrews; René Hen; Alain M. Gardier
Growing evidence supports the involvement of brain-derived neurotrophic factor (BDNF) in mood disorders and the mechanism of action of antidepressant drugs. However, the relationship between BDNF and serotonergic signalling is poorly understood. Heterozygous mutants BDNF +/- mice were utilized to investigate the influence of BDNF on the serotonin (5-HT) system and the activity of the serotonin transporter (SERT) in the hippocampus. The zero net flux method of quantitative microdialysis revealed that BDNF +/- heterozygous mice have increased basal extracellular 5-HT levels in the hippocampus and decreased 5-HT reuptake capacity. In keeping with these results, the selective serotonin reuptake inhibitor paroxetine failed to increase hippocampal extracellular 5-HT levels in BDNF +/- mice while it produced robust effects in wild-type littermates. Using in-vitro autoradiography and synaptosome techniques, we investigated the causes of attenuated 5-HT reuptake in BDNF +/- mice. A significant decrease in [3H]citalopram-binding-site density in the CA3 subregion of the ventral hippocampus and a significant reduction in [3H]5-HT uptake in hippocampal synaptosomes, revealed mainly a decrease in SERT function. However, 5-HT1A autoreceptors were not desensitized in BDNF +/- mice. These results provide evidence that constitutive reductions in BDNF modulate SERT function reuptake in the hippocampus.
Journal of Neuroscience Methods | 2006
Eric Dailly; Franck Chenu; Benoit Petit-Demoulière; Michel Bourin
The aim of this work is to define neurotoxins doses to have efficient and specific depletion of noradrenaline (NA), serotonin (5-HT) neurotransmission in cortex, striatum, hippocampus and hypothalamus of Swiss mice after intraperitoneal administration of, respectively, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) and para-chlorophenylalanine methyl ester hydrochloride (PCPA). The neurotransmitters concentrations were determined by high performance liquid chromatography with amperometric detection. The minimal single dose necessary to produce a highly significant decrease of NA levels (p<0.01 in comparison with control group) in hypothalamus (-44%), hippocampus (-91%), striatum (-40%) and cortex (-68%) was 50mg/kg but DA and 5-HT levels were modified, respectively, in hypothalamus and striatum. Three doses of PCPA 300 mg/kg over 3 consecutive days involve a profound depletion of 5-HT transmission in all discrete brain areas but NA and DA levels were also significantly reduced. In conclusion, DSP-4 has a different efficacy in discrete brain areas with a noradrenergic specificity which is not absolute, PCPA has a similar efficacy in all brain areas but is unspecific of 5-HT transmission.
Neuropsychopharmacology | 2006
Jean-Philippe Guilloux; Denis J. David; Bruno P. Guiard; Franck Chenu; Christelle Repérant; Miklós Tóth; Michel Bourin; Alain M. Gardier
Selective serotonin reuptake inhibitors like paroxetine (Prx) often requires 4–6 weeks to achieve clinical benefits in depressed patients. Pindolol shortens this delay and it has been suggested that this effect is mediated by somatodendritic 5-hydroxytryptamine (5-HT) 1A autoreceptors. However clinical data on the beneficial effects of pindolol are conflicting. To study the effects of (±)-pindolol–paroxetine administration, we used genetical and pharmacological approaches in 5-HT1A knockout mice (5-HT1A−/−). Two assays, in vivo intracerebral microdialysis in awake mice and the forced swimming test (FST), were used to assess the antidepressant-like effects of this drug combination. Basal levels of extracellular serotonin, 5-HT ([5-HT]ext) in the frontal cortex (FCX) and the dorsal raphe nucleus (DRN) did not differ between the two strains of mice, suggesting a lack of tonic control of 5-HT1A autoreceptors on nerve terminal 5-HT release. Prx (1 and 4 mg/kg) dose-dependently increased cortical [5-HT]ext in both genotypes, but the effects were greater in mutants. The selective 5-HT1A receptor antagonist, WAY-100635 (0.5 mg/kg), or (±)-pindolol (5 and 10 mg/kg) potentiated the effects of Prx (4 mg/kg) on cortical [5-HT]ext in 5-HT1A+/+, but not in 5-HT1A−/− mice. Similar responses were obtained following local intra-raphe perfusion by reverse microdialysis of either WAY-100635 or (±)-pindolol (100 μM each). In the FST, Prx administration dose-dependently decreased the immobility time in both strains of mice, but the response was much greater in 5HT1A−/− mice. In contrast, (±)-pindolol blocked Prx-induced decreases in the immobility time while WAY-100635 had no effect in both genotypes. These findings using 5-HT1A−/− mice confirm that (±)-pindolol behaves as an antagonist of 5-HT1A autoreceptor in mice, but its blockade of paroxetine-induced antidepressant-like effects in the FST may be due to its binding to other neurotransmitter receptors.
Neuropsychopharmacology | 2013
Franck Chenu; Mostafa El Mansari; Pierre U. Blier
Agomelatine is a melatonergic MT1/MT2 agonist and a serotonin (5-HT) 5-HT2C antagonist. The effects of 2-day and 14-day administration of agomelatine were investigated on the activity of ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) 5-HT neurons using in vivo electrophysiology in rats. The 5-HT1A transmission was assessed at hippocampus CA3 pyramidal neurons. After a 2-day regimen of agomelatine (40 mg/kg/day, i.p.), an increase in the number of spontaneously active VTA-DA neurons (p<0.001) and in the firing rate of LC-NE neurons (p<0.001) was observed. After 14 days, the administration of agomelatine induced an increase in: (1) the number of spontaneously active DA neurons (p<0.05), (2) the bursting activity of DA neurons (bursts/min, p<0.01 and percentage of spikes occurring in bursts, p<0.05), (3) the firing rate of DRN-5-HT neurons (p<0.05), and (4) the tonic activation of postsynaptic 5-HT1A receptors located in the hippocampus. The increase in 5-HT firing rate was D2 dependent, as it was antagonized by the D2 receptor antagonist paliperidone. The enhancement of NE firing was restored by the 5-HT2A receptor antagonist MDL-100,907 after the 14-day regimen. All the effects of agomelatine were antagonized by a single administration of the melatonergic antagonist S22153 (except for the increase in the percentage of spikes occurring in burst for DA neurons). The present results suggest that (1) agomelatine exerts direct (2 days) and indirect (14 days) modulations of monoaminergic neuronal activity and (2) the melatonergic agonistic activity of agomelatine contributes to the enhancement of DA and 5-HT neurotransmission.
Behavioural Brain Research | 2006
Franck Chenu; Bruno P. Guiard; Michel Bourin; Alain M. Gardier
Substance P antagonists of the neurokinin-1 receptor type (NK1) have growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurons. In line with this assumption, previous intracerebral in vivo microdialysis experiments provided evidence that the NK1 receptor antagonists did not change basal cortical 5-HT levels. However, we found that increases in cortical 5-HT overflow caused by systemic injection of the selective serotonin reuptake inhibitor (SSRI), paroxetine was higher in freely moving (C57BL/6x129sv) NK1-/- mutants than in wild-type NK1+/+ mice. More recently, a pharmacological study has led to a similar conclusion since GR205171, a NK1 receptor antagonist, potentiated paroxetine-induced increases in cortical 5-HT dialysate following its acute systemic or intra-raphe administration to wild-type mice . In the present study, we tested whether an acute combination of SSRI and NK1 receptor antagonist could display antidepressant-like activity using the forced swimming test in Swiss mice. We found that a single systemic dose of GR205171 (10 and 30 mg/kg, i.p.) had no effect by itself. However, it selectively potentiated the antidepressant-like activity of subactive doses of two serotonergic antidepressant drugs, citalopram and paroxetine (without psychomotor stimulant activity), but not that of noradrenaline reuptake inhibitor, desipramine. In agreement with neurochemical data, the present study confirms that co-administration of a NK1 receptor antagonist with an antidepressant drug such as a SSRI may have a therapeutic potential to improve the treatment of major depressive episodes in human compared to SSRI alone.
Current Drug Targets | 2009
Michel Bourin; Franck Chenu; Martine Hascoët
Antidepressant drugs modify in different ways the activity of neurons, by increasing monoamines levels and by modulating ion channels. Sodium channels are molecular targets for antiepileptic drugs, which can also be mood stabilizers (i.e. lamotrigine, topiramate, phenytoin, carbamazepine, valproic acid). After a short overview on the sodium channels and the interaction with antidepressants and mood stabilizers, a comparison of the activity of both antidepressants and mood stabilizers with the addition of veratrine (sodium channel opener) on the forced swimming test (FST) in mice was presented. By comparing the antidepressant-like effect of the antidepressants (paroxetine, imipramine and desipramine) with the one of anticonvulsants (lamotrigine, phenytoin and topiramate) on the FST, it seems that the mechanism of action of anticonvulsants and antidepressants are different, because veratrine limits the activity of anticonvulsants but not of antidepressants. The anticonvulsants topiramate and phenytoin reduce the immobility time in the FST in a range of time similar to those induced by antidepressants, suggesting that the FST could be sensitive to both drugs. The magnitude of antidepressant-like effect of the lamotrigine (acting through an increase in monoaminergic neurotransmission and a blockade of sodium channels) in the FST is greater than what is obtained after administration of the other drugs, suggesting that this dual activity could be used as an augmentation strategy. Authors conclude that the development of new drugs acting on sodium channels could potentially be of interest as antidepressants, but also as augmentation strategies for classical antidepressants.
The International Journal of Neuropsychopharmacology | 2011
Bruno P. Guiard; Franck Chenu; Mostafa El Mansari; Pierre Blier
Triple reuptake inhibitors represent a potential new class of antidepressant drugs that block norepinephrine (NE), dopamine (DA) and serotonin [5-hydroxytryptamine (5-HT)] transporters. The present in-vivo electrophysiological study was undertaken to determine the effects of the triple reuptake inhibitors SEP-225289 and DOV216303 on the neuronal activities of locus coeruleus (LC) NE, ventral tegmental area (VTA) DA and dorsal raphe (DR) 5-HT neurons. Administered acutely, SEP-225289 and DOV216303 dose-dependently decreased the spontaneous firing rate of LC NE, VTA DA and DR 5-HT neurons through the activation of α₂, D₂ and 5-HT(₁A) autoreceptors, respectively. Both compounds predominantly inhibited the firing rate of LC NE neurons while producing only a partial decrease in VTA DA and DR 5-HT neuronal discharge. SEP-225289 was equipotent at inhibiting 5-HT and NE transporters since it prolonged to the same extent the time required for a 50% recovery (RT₅₀) of the firing activity of dorsal hippocampus CA3 pyramidal neurons from the inhibition induced by microiontophoretic application of 5-HT and NE. Finally, in the presence of WAY100635, a 5-HT(₁A) receptor antagonist, SEP-225289 activated 5-HT neurons at doses that normally did not inhibit them. Taken together, the present results indicate that reciprocal interactions among NE, DA and 5-HT inputs need to be considered to anticipate the net effect of triple reuptake inhibitors on the enhancement of brain monoamine transmission. The results also suggest that the therapeutic action of triple reuptake inhibitors may be potentiated by antagonizing the cell body 5-HT(₁A) autoreceptors.