Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franck Denat is active.

Publication


Featured researches published by Franck Denat.


Angewandte Chemie | 2011

Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications

François Lux; Anna Mignot; Pierre Mowat; Cédric Louis; Sandrine Dufort; Claire Bernhard; Franck Denat; Frédéric Boschetti; Claire Brunet; Rodolphe Antoine; Philippe Dugourd; Sophie Laurent; Luce Vander Elst; Robert N. Muller; Lucie Sancey; Véronique Josserand; Jean-Luc Coll; Vasile Stupar; Emmanuel L. Barbier; Chantal Rémy; Alexis Broisat; Catherine Ghezzi; Géraldine Le Duc; Stéphane Roux; Pascal Perriat; Olivier Tillement

Ultrasmall but multifunctional: Rigid imaging particles that are smaller than 5 nm in size can be obtained in a top-down process starting from a core–shell structure (core=gadolinium oxide; shell=polysiloxane). They represent the first multifunctional silica-based particles that are sufficiently small to escape hepatic clearance and enable animal imaging by four complementary techniques


British Journal of Radiology | 2014

The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy

Lucie Sancey; François Lux; Shady Kotb; S Roux; S Dufort; Andrea Bianchi; Y Crémillieux; P Fries; J-L Coll; Claire Rodriguez-Lafrasse; M Janier; M Dutreix; Muriel Barberi-Heyob; F Boschetti; Franck Denat; C Louis; Erika Porcel; S. Lacombe; G Le Duc; E Deutsch; J-L Perfettini; Alexandre Detappe; Camille Verry; R Berbeco; Karl T. Butterworth; Stephen J. McMahon; Kevin Prise; Pascal Perriat; Olivier Tillement

A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed.


Chemistry: A European Journal | 2013

A Top‐Down Synthesis Route to Ultrasmall Multifunctional Gd‐Based Silica Nanoparticles for Theranostic Applications

Anna Mignot; Charles Truillet; François Lux; Lucie Sancey; Cédric Louis; Franck Denat; Frédéric Boschetti; Laura Bocher; Alexandre Gloter; Odile Stéphan; Rodolphe Antoine; Philippe Dugourd; Dominique Luneau; Ghenadie Novitchi; L. C. Figueiredo; P.C. Morais; Laurent Bonneviot; Belen Albela; François Ribot; Luk Van Lokeren; Isabelle Déchamps-Olivier; Françoise Chuburu; Gilles Lemercier; Christian L. Villiers; Patrice N. Marche; Géraldine Le Duc; Stéphane Roux; Olivier Tillement; Pascal Perriat

New, ultrasmall nanoparticles with sizes below 5 nm have been obtained. These small rigid platforms (SRP) are composed of a polysiloxane matrix with DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid)-Gd(3+) chelates on their surface. They have been synthesised by an original top-down process: 1) formation of a gadolinium oxide Gd2O3 core, 2) encapsulation in a polysiloxane shell grafted with DOTAGA ligands, 3) dissolution of the gadolinium oxide core due to chelation of Gd(3+) by DOTAGA ligands and 4) polysiloxane fragmentation. These nanoparticles have been fully characterised using photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR) to demonstrate the dissolution of the oxide core and by inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry, fluorescence spectroscopy, (29)Si solid-state NMR, (1)H NMR and diffusion ordered spectroscopy (DOSY) to determine the nanoparticle composition. Relaxivity measurements gave a longitudinal relaxivity r1 of 11.9 s(-1)  mM(-1) per Gd at 60 MHz. Finally, potentiometric titrations showed that Gd(3+) is strongly chelated to DOTAGA (complexation constant logβ110 =24.78) and cellular tests confirmed the that nanoconstructs had a very low toxicity. Moreover, SRPs are excreted from the body by renal clearance. Their efficiency as contrast agents for MRI has been proved and they are promising candidates as sensitising agents for image-guided radiotherapy.


Organic Letters | 2009

Diaminoanthraquinone-linked polyazamacrocycles: efficient and simple colorimetric sensor for lead ion in aqueous solution.

Elena R. Ranyuk; Christiane Morkos Douaihy; A. G. Bessmertnykh; Franck Denat; Alexei D. Averin; I. P. Beletskaya; Roger Guilard

A new colorimetric molecular sensor based on a 1,8-diaminoanthraquinone signaling subunit exhibits efficient binding for lead ion in water and allows naked-eye detection.


Nucleic Acids Research | 2012

Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system

Loic Stefan; Franck Denat; David Monchaud

Since the initial discovery of the catalytic capability of short DNA fragments, this peculiar enzyme-like property (termed DNAzyme) has continued to garner much interest in the scientific community because of the virtually unlimited applications in developing new molecular devices. Alongside the exponential rise in the number of DNAzyme applications in the last past years, the search for convenient ways to improve its overall efficiency has only started to emerge. Credence has been lent to this strategy by the recent demonstration that the quadruplex-based DNAzyme proficiency can be enhanced by ATP supplements. Herein, we have made a further leap along this path, trying first of all to decipher the actual DNAzyme catalytic cycle (to gain insights into the steps ATP may influence), and subsequently investigating in detail the influence of all the parameters that govern the catalytic efficiency. We have extended this study to other nucleotides and quadruplexes, thus demonstrating the versatility and broad applicability of such an approach. The defined exquisitely efficient DNAzyme protocols were exploited to highlight the enticing advantages of this method via a 96-well plate experiment that enables the detection of nanomolar DNA concentrations in real-time with the naked-eye (see movie as Supplementary Data).


Inorganic Chemistry | 2014

Slow and Fast Singlet Energy Transfers in BODIPY-gallium(III)corrole Dyads Linked by Flexible Chains

Bertrand Brizet; Nicolas Desbois; Antoine Bonnot; Adam Langlois; Adrien Dubois; Jean-Michel Barbe; Claude P. Gros; Christine Goze; Franck Denat; Pierre D. Harvey

Red (no styryl), green (monostyryl), and blue (distyryl) BODIPY-gallium(III) (BODIPY = boron-dipyrromethene) corrole dyads have been prepared in high yields using click chemistry, and their photophysical properties are reported. An original and efficient control of the direction of the singlet energy transfers is reported, going either from BODIPY to the gallium-corrole units or from gallium-corroles to BODIPY, depending upon the nature of the substitution on BODIPY. In one case (green), both directions are possible. The mechanism for the energy transfers is interpreted by means of through-space Förster resonance energy transfer (FRET).


Journal of Physical Chemistry A | 2012

Synthesis and photodynamics of fluorescent blue BODIPY-porphyrin tweezers linked by triazole rings.

Antoine Eggenspiller; Atsuro Takai; Mohamed E. El-Khouly; Kei Ohkubo; Claude P. Gros; Claire Bernhard; Christine Goze; Franck Denat; Jean-Michel Barbe; Shunichi Fukuzumi

Novel zinc porphyrin tweezers in which two zinc porphyrins were connected with π-conjugated boron dipyrromethenes (BDP meso-Por(2) and BDP β-Por(2)) through triazole rings were synthesized to investigate the photoinduced energy transfer and electron transfer. The UV-vis spectrum of BDP β-Por(2) which has less bulky substituents than BDP meso-Por(2) exhibits splitting of the Soret band as a result of the interaction between porphyrins of BDP β-Por(2) in the excited state. Such interaction between porphyrins of both BDP β-Por(2) and BDP meso-Por(2) is dominant at room temperature, while the coordination of the nitrogen atoms of the triazole rings to the zinc ions of the porphyrins occurs at low temperature. The conformational change of the BDP-porphyrin composites was confirmed by the changes in UV-vis and fluorescence spectra depending on temperature. Photodynamics of BDP meso-Por(2) and BDP β-Por(2) has also been investigated by laser flash photolysis. Efficient singlet-singlet energy transfer from the ZnP to the π-conjugated BDP moiety of both BDP meso-Por(2) and BDP β-Por(2) occurred in opposite direction as compared to energy transfer from conventional BDP to ZnP due to the π-conjugation in nonpolar toluene. In polar benzonitrile, however, additional electron transfer occurred along with energy transfer.


Journal of Organic Chemistry | 2012

B,B-Diporphyrinbenzyloxy-BODIPY Dyes: Synthesis and Antenna Effect

Bertrand Brizet; Antoine Eggenspiller; Claude P. Gros; Jean-Michel Barbe; Christine Goze; Franck Denat; Pierre D. Harvey

B,B-Diporphyrinbenzyloxy-BODIPY derivatives have been prepared in high yields, and the photophysical properties are reported. Singlet energy transfers from BODIPY to the porphyrin units have been analyzed.


Chemistry: A European Journal | 2012

DOTAGA-anhydride: a valuable building block for the preparation of DOTA-like chelating agents.

Claire Bernhard; Mathieu Moreau; Damien Lhenry; Christine Goze; Frédéric Boschetti; Yoann Rousselin; François Brunotte; Franck Denat

A DOTA derivative that contains an anhydride group was readily synthesized by reacting DOTAGA with acetic anhydride and its reactivity was investigated. Opening the anhydride with propylamine led to the selective formation of one of two possible regioisomers. The structure of the obtained isomer was unambiguously determined by 1D and 2D NMR experiments, including COSY, HMBC, and NOESY techniques. This bifunctional chelating agent offers a convenient and attractive approach for labeling biomolecules and, more generally, for the synthesis of a large range of DOTA derivatives. The scope of the reaction was extended to prepare DOTA-like compounds that contained various functional groups, such as isothiocyanate, thiol, ester, and amino acid moieties. This versatile building block was also used for the synthesis of a bimodal tag for SPECT or PET/optical imaging.


Journal of Materials Chemistry | 2002

Cyclam complexes containing silica gels for dioxygen adsorption

Geraud Dubois; Raphaël Tripier; Stéphane Brandès; Franck Denat; Roger Guilard

Several cyclam incorporating silica gels have been synthesised using three different methods, including a sol–gel approach. These various materials show different textures and the macrocycle contents can reach values up to 1.5 mmol g−1. Cu(II) and Co(II) complexes of these modified silica gels have been studied. Finally, the efficiency of [Co(cyclam)]2+ grafted onto silica for binding dioxygen has been determined using ESR spectroscopy and static volumetric gas uptake measurements. The most efficient material behaves as a high-performance dioxygen binding system, showing a very high affinity for dioxygen ((P1/2)1 = 1.91 Torr) coupled with a large total volume of gas adsorbed at 1 atm (3.0 cm3 g−1).

Collaboration


Dive into the Franck Denat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Boschetti

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Moreau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge