Franck Potet
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franck Potet.
Journal of the American College of Cardiology | 2003
Vincent Probst; Florence Kyndt; Franck Potet; Jean Noel Trochu; Guy Mialet; Sophie Demolombe; Jean-Jacques Schott; Isabelle Baró; Denis Escande; Hervé Le Marec
OBJECTIVES The goal of this study was to investigate the genotype-to-phenotype relationship between SCN5A gene mutation and progressive cardiac conduction defect in order to gain insights into the pathophysiologic mechanisms of the disease. BACKGROUND Progressive cardiac conduction defect is a frequent disease commonly attributed to degeneration and fibrosis of the His bundle and its branches. In a French family, we have identified a splicing mutation in the SCN5A gene leading to hereditary progressive cardiac conduction defect. METHODS We have extended the size of the pedigree and phenotyped and genotyped all family members, and also investigated in vitro the functional consequences of the mutation. RESULTS Among 65 potentially affected members, 25 individuals were carriers of the IVS.22+2 T-->C SCN5A mutation. In relation to aging, gene carriers exhibit various types of conduction defects. P-wave, PR, and QRS duration increased progressively with age in gene carriers and in noncarriers. Whatever the age, conduction parameters were longer in gene carriers. The widening in the QRS complex with aging was more pronounced in gene carriers older than 40 years. Functional studies show that the IVS.22+2 T-->C SCN5A mutation lead to exon 22 skipping and to a complete loss of function of the affected allele, but to a normal trafficking of the mutated gene product. CONCLUSIONS Our findings demonstrate that hereditary Lenègre disease is caused by a haploinsufficiency mechanism, which in combination with aging leads to progressive alteration in conduction velocity.
Journal of Cardiovascular Electrophysiology | 2003
Franck Potet; Philippe Mabo; Guillaume Le Coq; Vincent Probst; Jean-Jacques Schott; Fabrice Airaud; Gilles Guihard; Jean Claude Daubert; Denis Escande; Hervé Le Marec
SCN5A Mutation and ST Segment Elevation in Inferior Leads. Mutations in the SCN5A gene can lead to the Brugada syndrome, a genetically inherited form of idiopathic ventricular fibrillation that has a characteristic ECG phenotype usually restricted to precordial leads V1–V3. We identified a novel G752R SCN5A missense mutation leading to various degrees of the Brugada ECG phenotype in members of a French family. In the proband, the G752R mutation produced ST segment elevation and prominent J wave in leads II, III, and aVF. In four other relatives, ST segment elevation in the right precordial but not in the inferior leads was observed either spontaneously or under flecainide challenge. Recombinant G752R mutant exhibited a markedly reduced Na+ current amplitude and a voltage shift in both activation and inactivation curves. The mutant was found in all affected but not in nonaffected family members. One additional gene‐carrier had an almost normal ECG (silent gene‐carrier). We provide genetic demonstration that Brugada ECG anomalies related to a unique SCN5A mutation can be observed either in the inferior or the right precordial leads. (J Cardiovasc Electrophysiol, Vol. 14, pp. 200‐203, February 2003)
Journal of Biological Chemistry | 2009
Benjamin Chagot; Franck Potet; Jeffrey R. Balser; Walter J. Chazin
The voltage-gated sodium channel NaV1.5 is responsible for the initial upstroke of the action potential in cardiac tissue. Levels of intracellular calcium modulate inactivation gating of NaV1.5, in part through a C-terminal EF-hand calcium binding domain. The significance of this structure is underscored by the fact that mutations within this domain are associated with specific cardiac arrhythmia syndromes. In an effort to elucidate the molecular basis for calcium regulation of channel function, we have determined the solution structure of the C-terminal EF-hand domain using multidimensional heteronuclear NMR. The structure confirms the existence of the four-helix bundle common to EF-hand domain proteins. However, the location of this domain is shifted with respect to that predicted on the basis of a consensus 12-residue EF-hand calcium binding loop in the sequence. This finding is consistent with the weak calcium affinity reported for the isolated EF-hand domain; high affinity binding is observed only in a construct with an additional 60 residues C-terminal to the EF-hand domain, including the IQ motif that is central to the calcium regulatory apparatus. The binding of an IQ motif peptide to the EF-hand domain was characterized by isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. The peptide binds between helices I and IV in the EF-hand domain, similar to the binding of target peptides to other EF-hand calcium-binding proteins. These results suggest a molecular basis for the coupling of the intrinsic (EF-hand domain) and extrinsic (calmodulin) components of the calcium-sensing apparatus of NaV1.5.
Journal of Biological Chemistry | 2009
Franck Potet; Benjamin Chagot; Mircea Anghelescu; Prakash C. Viswanathan; Svetlana Z. Stepanovic; Sabina Kupershmidt; Walter J. Chazin; Jeffrey R. Balser
Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.
Journal of Molecular and Cellular Cardiology | 2003
Lucas J. Herfst; Franck Potet; Connie R. Bezzina; W. Antoinette Groenewegen; Hervé Le Marec; Theo M. Hoorntje; Sophie Demolombe; Isabelle Baró; Denis Escande; Habo J. Jongsma; Arthur A.M. Wilde; Martin B. Rook
BACKGROUND We previously described a Dutch family in which congenital cardiac conduction disorder has clinically been identified. The ECG of the index patient showed a first-degree AV block associated with extensive ventricular conduction delay. Sequencing of the SCN5A locus coding for the human cardiac Na+ channel revealed a single nucleotide deletion at position 5280, resulting in a frame-shift in the sequence coding for the pore region of domain IV and a premature stop codon at the C-terminus. METHODS AND RESULTS Wild type and mutant Na+ channel proteins were expressed in Xenopus laevis oocytes and in mammalian cells. Voltage clamp experiments demonstrated the presence of fast activating and inactivating inward currents in cells expressing the wild type channel alone or in combination with the beta1 subinut (SCN1B). In contrast, cells expressing the mutant channels did not show any activation of inward current with or without the beta1 subunit. Culturing transfected cells at 25 degrees C did not restore the Na+ channel activity of the mutant protein. Transient expression of WT and mutant Na+ channels in the form of GFP fusion proteins in COS-7 cells indicated protein expression in the cytosol. But in contrast to WT channels were not associated with the plasma membrane. CONCLUSIONS The SCN5A/5280delG mutation results in the translation into non-function channel proteins that do not reach the plasma membrane. This could explain the cardiac conduction defects in patients carrying the mutation.
Cardiovascular Research | 2001
Philippe Chevalier; Claire Rodriguez; Laurence Bontemps; Maryvonne Miquel; Gilbert Kirkorian; Robert Rousson; Franck Potet; Jean-Jacques Schott; Isabelle Baró; Paul Touboul
BACKGROUND Although well-defined clinically and electrocardiographically, Acquired Long QT Syndrome (LQTS) remains elusive from a pathophysiologic point of view. An increasingly accepted hypothesis is that it represents an attenuated form of Congenital Long QT Syndrome. To test this hypothesis further, we investigated patients with Acquired LQTS, using various investigations that are known to give information in patients with Congenital LQTS. METHODS All the investigations were performed in patients with a history of Acquired Long QT Syndrome, defined by marked transient QT lengthening (QT>600 ms) and/or torsades de pointes. Measurement of the QT interval dispersion, the interlead difference for the QT interval on a 12-lead ECG, was performed in 18 patients and compared with 18 controls, matched for age and sex. To assess sympathetic myocardial innervation, I-123 Meta-iodobenzylguanidine (I-123-MIBG) scintigraphy was performed in 12 patients, together with Thallium scintigraphy, to rule out abnormal myocardial perfusion. Time-frequency analysis of a high-resolution ECG using a wavelet technique, was made for nine patients and compared with 38 healthy controls. Finally, genetic studies were performed prospectively in 16 consecutive patients, to look for HERG, KCNE1, KCNE2 and KCNQ1 mutations. The functional profile of a mutated HERG protein was performed using the patch-clamp technique. RESULTS Compared with the control group, a significant increase in QT dispersion was observed in the patients with a history of Acquired LQTS (55+/-15 vs. 33+/-9 ms, P<0.001). In another group of patients with Acquired LQTS, 123 I-MIBG tomoscintigraphy demonstrated a decrease in the sympathetic myocardial innervation. Time--frequency analysis using wavelet transform, demonstrated an abnormal frequency content within the QRS complexes, in the patients with Acquired LQTS, similar to that found in Congenital LQTS patients. Molecular screening in 16 consecutive patients, identified one patient with a missense mutation on HERG, one of the LQTS genes. Expression of the mutated HERG protein led to altered K(+) channel function. CONCLUSION Our results suggest that Acquired and Congenital Long QT Syndromes have some common features. They allow the mechanism of the clinical heterogeneity, found in both syndromes, to be understood. Further multi-facet approaches are needed to decipher the complex interplay between the main determinants of these arrhythmogenic diseases.
Heart Rhythm | 2014
Thomas M. Beckermann; Karen McLeod; Victoria Murday; Franck Potet; Alfred L. George
BACKGROUND Mutations in SCN5A, which encodes the cardiac sodium channel NaV1.5, typically cause ventricular arrhythmia or conduction slowing. Recently, SCN5A mutations have been associated with heart failure combined with variable atrial and ventricular arrhythmia. OBJECTIVE The purpose of this study was to determine the clinical, genetic, and functional features of an amiodarone-responsive multifocal ventricular ectopy-related cardiomyopathy associated with a novel mutation in a NaV1.5 voltage sensor domain. METHODS A novel, de novo SCN5A mutation (NaV1.5-R225P) was identified in a boy with prenatal arrhythmia and impaired cardiac contractility followed by postnatal multifocal ventricular ectopy suppressible by amiodarone. We investigated the functional consequences of NaV1.5-R225P expressed heterologously in tsA201 cells. RESULTS Mutant channels exhibited significant abnormalities in both activation and inactivation leading to large, hyperpolarized window and ramp currents that predict aberrant sodium influx at potentials near the cardiomyocyte resting membrane potential. Mutant channels also exhibited significantly increased persistent (late) sodium current. This profile of channel dysfunction shares features with other SCN5A voltage sensor mutations associated with cardiomyopathy and overlapped that of congenital long QT syndrome. Amiodarone stabilized fast inactivation, suppressed persistent sodium current, and caused frequency-dependent inhibition of channel availability. CONCLUSION We determined the functional consequences and pharmacologic responses of a novel SCN5A mutation associated with an arrhythmia-associated cardiomyopathy. Comparisons with other cardiomyopathy-associated NaV1.5 voltage sensor mutations revealed a pattern of abnormal voltage dependence of activation as a shared biophysical mechanism of the syndrome.
Stem Cells | 2014
Vineeta Tanwar; Jeffery B. Bylund; Jianyong Hu; Jingbo Yan; Joel M. Walthall; Amrita Mukherjee; William H. Heaton; Wen Der Wang; Franck Potet; Meena Rai; Sabina Kupershmidt; Ela W. Knapik; Antonis K. Hatzopoulos
The bone morphogenetic protein antagonist Gremlin 2 (Grem2) is required for atrial differentiation and establishment of cardiac rhythm during embryonic development. A human Grem2 variant has been associated with familial atrial fibrillation, suggesting that abnormal Grem2 activity causes arrhythmias. However, it is not known how Grem2 integrates into signaling pathways to direct atrial cardiomyocyte differentiation. Here, we demonstrate that Grem2 expression is induced concurrently with the emergence of cardiovascular progenitor cells during differentiation of mouse embryonic stem cells (ESCs). Grem2 exposure enhances the cardiogenic potential of ESCs by 20–120‐fold, preferentially inducing genes expressed in atrial myocytes such as Myl7, Nppa, and Sarcolipin. We show that Grem2 acts upstream to upregulate proatrial transcription factors CoupTFII and Hey1 and downregulate atrial fate repressors Irx4 and Hey2. The molecular phenotype of Grem2‐induced atrial cardiomyocytes was further supported by induction of ion channels encoded by Kcnj3, Kcnj5, and Cacna1d genes and establishment of atrial‐like action potentials shown by electrophysiological recordings. We show that promotion of atrial‐like cardiomyocytes is specific to the Gremlin subfamily of BMP antagonists. Grem2 proatrial differentiation activity is conveyed by noncanonical BMP signaling through phosphorylation of JNK and can be reversed by specific JNK inhibitors, but not by dorsomorphin, an inhibitor of canonical BMP signaling. Taken together, our data provide novel mechanistic insights into atrial cardiomyocyte differentiation from pluripotent stem cells and will assist the development of future approaches to study and treat arrhythmias. Stem Cells 2014;32:1774–1788
Journal of Molecular and Cellular Cardiology | 2010
T. Nakajima; Sean S. Davies; E. Matafonova; Franck Potet; Venkataraman Amarnath; K.A. Tallman; R.A. Serwa; N.A. Porter; Jeffrey R. Balser; Sabina Kupershmidt; L.J. Roberts
The cardiac sodium channel (SCN5A, Na(V)1.5) is a key determinant of electrical impulse conduction in cardiac tissue. Acute myocardial infarction leads to diminished sodium channel availability, both because of decreased channel expression and because of greater inactivation of channels already present. Myocardial infarction leads to significant increases in reactive oxygen species and their downstream effectors including lipoxidation products. The effects of reactive oxygen species on Na(V)1.5 function in whole hearts can be modeled in cultured myocytes, where oxidants shift the availability curve of I(Na) to hyperpolarized potentials, decreasing cardiac sodium current at the normal activation threshold. We recently examined potential mediators of the oxidant-induced inactivation and found that one specific lipoxidation product, the isoketals, recapitulated the effects of oxidant on sodium currents. Isoketals are highly reactive gamma-ketoaldehydes formed by the peroxidation of arachidonic acid that covalently modify the lysine residues of proteins. We now confirm that exposure to oxidants induces lipoxidative modification of Na(V)1.5 and that the selective isoketal scavengers block voltage-dependent changes in sodium current by the oxidant tert-butylhydroperoxide, both in cells heterologously expressing Na(V)1.5 and in a mouse cardiac myocyte cell line (HL-1). Thus, inhibition of this lipoxidative modification pathway is sufficient to protect the sodium channel from oxidant induced inactivation and suggests the potential use of isoketal scavengers as novel therapeutics to prevent arrhythmogenesis during myocardial infarction.
Journal of Biological Chemistry | 2012
Franck Potet; Amanda N. Lorinc; Sebastien Chaigne; Corey R. Hopkins; Raghav Venkataraman; Svetlana Z. Stepanovic; L. Michelle Lewis; Emily Days; Veniamin Y. Sidorov; Darren W. Engers; Beiyan Zou; David Afshartous; Alfred L. George; Courtney M. Campbell; Jeffrey R. Balser; Min Li; Franz J. Baudenbacher; Craig W. Lindsley; C. David Weaver; Sabina Kupershmidt
Background: Inhibition of the cardiac hERG channel by essential pharmaceuticals is unpredictable and leads to fatal arrhythmias. Results: Pretreatment with a newly identified compound, VU0405601, reduces sensitivity of hERG to inhibition by multiple blockers and prevents arrhythmias. Conclusion: hERG-related arrhythmias are amenable to preventive therapy. Significance: A novel approach at ion channel modulation that impacts drug discovery and safety concerns is outlined. The human Ether-à-go-go-related gene (hERG)-encoded K+ current, IKr is essential for cardiac repolarization but is also a source of cardiotoxicity because unintended hERG inhibition by diverse pharmaceuticals can cause arrhythmias and sudden cardiac death. We hypothesized that a small molecule that diminishes IKr block by a known hERG antagonist would constitute a first step toward preventing hERG-related arrhythmias and facilitating drug discovery. Using a high-throughput assay, we screened a library of compounds for agents that increase the IC70 of dofetilide, a well characterized hERG blocker. One compound, VU0405601, with the desired activity was further characterized. In isolated, Langendorff-perfused rabbit hearts, optical mapping revealed that dofetilide-induced arrhythmias were reduced after pretreatment with VU0405601. Patch clamp analysis in stable hERG-HEK cells showed effects on current amplitude, inactivation, and deactivation. VU0405601 increased the IC50 of dofetilide from 38.7 to 76.3 nm. VU0405601 mitigates the effects of hERG blockers from the extracellular aspect primarily by reducing inactivation, whereas most clinically relevant hERG inhibitors act at an inner pore site. Structure-activity relationships surrounding VU0405601 identified a 3-pyridiyl and a naphthyridine ring system as key structural components important for preventing hERG inhibition by multiple inhibitors. These findings indicate that small molecules can be designed to reduce the sensitivity of hERG to inhibitors.