François Brischoux
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Brischoux.
PLOS ONE | 2011
Jean-Marie Ballouard; François Brischoux; Xavier Bonnet
Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1) a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2) an internet content analysis (i.e. Google searching sessions using keywords) was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect “virtual” (unseen, exotic) rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity.
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2004
Olivier Lourdais; François Brischoux; Dale F. DeNardo; Richard Shine
In many species the high energetic demands of reproduction induce a negative energy balance, and thus females must rely on tissue catabolism to complete the reproductive process. Previous works have shown that both fat and protein are energy resources during prolonged fasting in vertebrates. While many ecological studies on energy costs of reproduction have focused on variations in fat stores, the impact of protein investment on the female has not been thoroughly investigated. Notably, as there is no specialized storage form for proteins, intense catabolism is likely to entail structural (musculature) loss that may compromise maternal physical performance after reproduction. Measurements on captive rainbow boas (Epicrates cenchria maurus) confirm that reproducing females undergo significant protein catabolism (as indicated by elevated plasma uric acid levels) and show considerable musculature loss during gestation (as detected by reduced width of the epaxial muscles). Protein mobilization entailed a significant functional loss that was illustrated by decrements in tests of strength and constriction after parturition. In wild situations, such effects are likely to decrease the snakes’ ability to forage and apprehend prey. Hence, the time period needed to recover from reproduction can be extended not only because the female must compensate losses of both fat stores and functional muscle, but also because the ability to do so may be compromised. Performance alteration is likely to be of equal or greater importance than reduced energy stores in the physiological mediation of elevated post-reproduction mortality rates and infrequent reproductive bouts (e.g. biannual or triannual), two common ecological traits of female snakes.
Journal of Evolutionary Biology | 2008
François Brischoux; Xavier Bonnet; Timothée R. Cook; Richard Shine
Body mass positively influences diving capacities in air‐breathing vertebrates and has been identified as a key determinant for the evolution of diving. Our review on the relationship between body mass and dive duration (a major parameter of dive performances) encompassed for the first time a wide diversity of air‐breathing vertebrates. We included a substantial number of nonavian and nonmammalian diving species belonging to various independent lineages (sea snakes, iguana, turtles and crocodiles). Our analyses suggest that the widely accepted size dependency of dive duration applies with significantly less force in ectotherms compared with endotherms; notably we failed to detect any effect of body mass in ectotherms. We hypothesize that the absence of tight physiological links between body mass and respiratory demands documented in ectotherms blurred our ability to detect the expected correlation. Further exploration of the evolution of diving physiology may well necessitate adopting novel perspectives to encompass both ectothermic and endothermic modes.
PLOS ONE | 2015
Alizée Meillère; François Brischoux; Charline Parenteau; Frédéric Angelier
Consistent expanding urbanization dramatically transforms natural habitats and exposes organisms to novel environmental challenges, often leading to reduced species richness and diversity in cities. However, it remains unclear how individuals are affected by the urban environment and how they can or cannot adjust to the specific characteristics of urban life (e.g. food availability). In this study, we used an integrative multi-component approach to investigate the effects of urbanization on the nutritional status of house sparrows (Passer domesticus). We assessed several morphological and physiological indices of body condition in both juveniles (early post-fledging) and breeding adults from four sites with different levels of urbanization in France, Western Europe. We found that sparrows in more urbanized habitats have reduced body size and body mass compared to their rural conspecifics. However, we did not find any consistent differences in a number of complementary indices of condition (scaled mass index, muscle score, hematocrit, baseline and stress-induced corticosterone levels) between urban and rural birds, indicating that urban sparrows may not be suffering nutritional stress. Our results suggest that the urban environment is unlikely to energetically constrain adult sparrows, although other urban-related variables may constrain them. On the other hand, we found significant difference in juvenile fat scores, suggesting that food types provided to young sparrows differed highly between habitats. In addition to the observed smaller size of urban sparrows, these results suggest that the urban environment is inadequate to satisfy early-life sparrows’ nutritional requirements, growth, and development. The urban environment may therefore have life-long consequences for developing birds.
Biology Letters | 2015
Alizée Meillère; François Brischoux; Cécile Ribout; Frédéric Angelier
In a consistently urbanizing world, anthropogenic noise has become almost omnipresent, and there are increasing evidence that high noise levels can have major impacts on wildlife. While the effects of anthropogenic noise exposure on adult animals have been widely studied, surprisingly, there has been little consideration of the effects of noise pollution on developing organisms. Yet, environmental conditions experienced in early life can have dramatic lifelong consequences for fitness. Here, we experimentally manipulated the acoustic environment of free-living house sparrows (Passer domesticus) breeding in nest boxes. We focused on the impact of such disturbance on nestlings’ telomere length and fledging success, as telomeres (the protective ends of chromosomes) appear to be a promising predictor of longevity. We showed that despite the absence of any obvious immediate consequences (growth and fledging success), nestlings reared under traffic noise exposure exhibited reduced telomere lengths compared with their unexposed neighbours. Although the mechanisms responsible for this effect remain to be determined, our results provide the first experimental evidence that noise alone can affect a wild vertebrates early-life telomere length. This suggests that noise exposure may entail important costs for developing organisms.
Environmental Conservation | 2009
Xavier Bonnet; François Brischoux; David Pearson; Philippe Rivalan
SUMMARY The shorelines of coral islets are subject to strong anthropogenic pressure, being highly coveted for tourism. These landforms contain unique biotic assemblages but unfortunately are limited in size making them extremely vulnerable to perturbation. Robust information linking habitat structure and species requirements is urgently needed to promote and guide the conservation of these fragile areas. New Caledonia contains critical shore habitats for two species of amphibious sea snakes. One species (Laticauda laticaudata) shelters almost exclusively under mobile beach rocks, which are both easily accessible from the sea and regularly submerged at high tide. The scarcity of such specific and spatially limited habitat restricts the distribution of this species to highly localized areas. The other species (L. saintgironsi)usesagreatervarietyofterrestrialrefuges, but has a preference for shores with abundant beach rocks. These findings offer a robust basis to promote the conservation of these crucial habitats and to justify their inclusion in marine protected areas(MPA), which in turn should benefit a wide array of other organisms also dependent on beach rocks.
Journal of Morphology | 2011
François Brischoux; Richard Shine
We investigated morphological adaptations to aquatic life within animals that exhibit a structurally simple, elongate body form, i.e., snakes. This linear body plan should impose different biomechanical constraints than the classical streamlined body shape associated with propulsion by fins, feet, or wings. Our measurements of general body shape of terrestrial, amphibious, and marine snakes (all from the same phylogenetic lineage, the Elapidae) show that seasnakes display specialized morphological attributes for life in water. Most notably, the cross‐sectional body shape is circular in terrestrial snakes but dorso‐ventrally elongated in seasnakes (due to a prominent ventral keel); amphibious species (sea kraits) exhibit an intermediate shape. The tail of amphibious and marine species (a major propulsive structure during swimming) is higher and thinner than in terrestrial snakes (i.e., paddle‐shaped) but shorter relative to body length. The evolution of a laterally compressed shape has been achieved by an increase in body height rather than a decrease in body width, possibly reflecting selection for more effective propulsive thrust, and for an ability to maintain hydrodynamic efficiency despite the minor bodily distension inevitably caused by prey items and developing offspring. J. Morphol., 2011.
General and Comparative Endocrinology | 2013
Andréaz Dupoué; François Brischoux; Olivier Lourdais; Frédéric Angelier
To cope with environmental challenges, organisms have to adjust their behaviours and their physiology to the environmental conditions they face (i.e. allostasis). In vertebrates, such adjustments are often mediated through the secretion of glucocorticoids (GCs) that are well-known to activate and/or inhibit specific physiological and behavioural traits. In ectothermic species, most processes are temperature-dependent and according to previous studies, low external temperatures should be associated with low GC concentrations (both baseline and stress-induced concentrations). In this study, we experimentally tested this hypothesis by investigating the short term influence of temperature on the GC stress response in a squamate reptile, the Childrens python (Antaresia childreni). Snakes were maintained in contrasting conditions (warm and cold groups), and their corticosterone (CORT) stress response was measured (baseline and stress-induced CORT concentrations), within 48h of treatment. Contrary to our prediction, baseline and stress-induced CORT concentrations were higher in the cold versus the warm treatment. In addition, we found a strong negative relationship between CORT concentrations (baseline and stress-induced) and temperature within the cold treatment. Although it remains unclear how cold temperatures can mechanistically result in increased CORT concentrations, we suggest that, at suboptimal temperature, high CORT concentrations may help the organism to maintain an alert state.
Biodiversity and Conservation | 2009
François Brischoux; Xavier Bonnet; David Pinaud
The shores of coral reef islands are major sites for biodiversity, but unfortunately they are also subject to strong anthropogenic disturbances. Indeed vast arrays of organisms live exclusively in these very narrow and well structured zones, many others depend on the rich and diverse micro-habitats for essential part of their life cycle (to reproduce, forage, etc.). Sea kraits are sea snakes that depend on the shore of coral islets; they forage at sea but digest, reproduce and rest on land. They have been killed in extremely large numbers in many places, causing local extinctions. In the current study we demonstrate through recapture and translocation studies that these snakes exhibit a strong and fine-scale fidelity for particular segments of the shore. Consequently, these specific areas should be under strong protection, as it the case for the breeding beaches used by marine mammals, birds or turtles.
Journal of Evolutionary Biology | 2010
François Brischoux; Lígia Pizzatto; Richard Shine
Pupil shape in vertebrates ranges from circular to vertical, with multiple phylogenetic shifts in this trait. Our analyses challenge the widely held view that the vertical pupil evolved as an adaptation to enhance night vision. On functional grounds, a variable‐aperture vertical pupil (i) allows a nocturnal species to have a sensitive retina for night vision but avoid dazzle by day by adjusting pupil closure, and (ii) increases visual acuity by day, because a narrow vertical pupil can project a sharper image onto the retina in the horizontal plane. Detection of horizontal movement may be critical for predators that wait in ambush for moving prey, suggesting that foraging mode (ambush predation) as well as polyphasic activity may favour the evolution of vertical pupil shape. Camouflage (disruption of the circular outline of the eye) also may be beneficial for ambush predators. A comparative analysis in snakes reveals significant functional links between pupil shape and foraging mode, as well as between pupil shape and diel timing of activity. Similar associations between ambush predation and vertically slit pupils occur in lizards and mammals also, suggesting that foraging mode has exerted major selective forces on visual systems in vertebrates.