Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Carlotti is active.

Publication


Featured researches published by François Carlotti.


Nature | 2007

Effect of natural iron fertilization on carbon sequestration in the Southern Ocean

Stéphane Blain; Bernard Quéguiner; Leanne K. Armand; Sauveur Belviso; Bruno Bombled; Laurent Bopp; Andrew R. Bowie; Christian Brunet; Corina Brussaard; François Carlotti; Urania Christaki; Antoine Corbière; Isabelle Durand; Frederike Ebersbach; Jean-Luc Fuda; Nicole Garcia; Loes J. A. Gerringa; Brian Griffiths; Catherine Guigue; Christophe Guillerm; Stéphanie Jacquet; Catherine Jeandel; Patrick Laan; D. Lefèvre; Claire Lo Monaco; Andrea Malits; Julie Mosseri; Ingrid Obernosterer; Young-Hyang Park; Marc Picheral

The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial–interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization—an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below—as invoked in some palaeoclimatic and future climate change scenarios—may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.


Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science | 2010

End-To-End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps

Kenneth A. Rose; J. Icarus Allen; Yuri Artioli; Manuel Barange; Jerry Blackford; François Carlotti; Roger Allan Cropp; Ute Daewel; Karen P. Edwards; Kevin J. Flynn; Simeon L. Hill; Reinier HilleRisLambers; Geir Huse; Steven Mackinson; Bernard A. Megrey; Andreas Moll; Richard B. Rivkin; Baris Salihoglu; Corinna Schrum; Lynne J. Shannon; Yunne-Jai Shin; S. Lan Smith; Chris Smith; Cosimo Solidoro; Michael St. John; Meng Zhou

Abstract There is growing interest in models of marine ecosystems that deal with the effects of climate change through the higher trophic levels. Such end-to-end models combine physicochemical oceanographic descriptors and organisms ranging from microbes to higher-trophic-level (HTL) organisms, including humans, in a single modeling framework. The demand for such approaches arises from the need for quantitative tools for ecosystem-based management, particularly models that can deal with bottom-up and top-down controls that operate simultaneously and vary in time and space and that are capable of handling the multiple impacts expected under climate change. End-to-end models are now feasible because of improvements in the component submodels and the availability of sufficient computing power. We discuss nine issues related to the development of end-to-end models. These issues relate to formulation of the zooplankton submodel, melding of multiple temporal and spatial scales, acclimation and adaptation, behavioral movement, software and technology, model coupling, skill assessment, and interdisciplinary challenges. We urge restraint in using end-to-end models in a true forecasting mode until we know more about their performance. End-to-end models will challenge the available data and our ability to analyze and interpret complicated models that generate complex behavior. End-to-end modeling is in its early developmental stages and thus presents an opportunity to establish an open-access, community-based approach supported by a suite of true interdisciplinary efforts.


Journal of Experimental Marine Biology and Ecology | 2002

Temperature impact on reproduction and development of congener copepod populations

Claudia Halsband-Lenk; Hans-Jürgen Hirche; François Carlotti

Abstract The goal of this study was to relate the temperature response of all developmental stages and reproductive biology of two congener copepod pairs inhabiting different biogeographic regions to their geographic distribution patterns. Survival of adult females and egg production, embryonic development and hatching success of the genera Centropages and Temora from two stations, in the North Sea and the Mediterranean, were studied in laboratory experiments in a temperature range from 2 to 35 °C. Postembryonic development was determined from cohorts raised at temperatures between 10 and 20 °C with surplus food. Tolerance limits and optima of female survival, reproduction and development distinguished the northern species Centropages hamatus and Temora longicornis from the southern T. stylifera, while C. typicus, which is found in both regions, was intermediate. Thus, thermal preferences could in part explain distribution patterns of these species. While C. hamatus and the two Temora species showed distinct temperature ranges, C. typicus was able to tolerate different temperature conditions, resulting in its wide distribution range from the subarctic to the tropics. However, the thermal range of a species did not necessarily correlate with the optimal temperatures in the experiments. Optima of egg production and stage development were surprisingly low in T. stylifera, which has a mere southern distribution.


Marine Pollution Bulletin | 2012

Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France).

Floriane Delpy; Marc Pagano; Jean Blanchot; François Carlotti; Delphine Thibault-Botha

The Berre Lagoon has been under strong anthropogenic pressure since the early 1950s. The opening of the hydroelectric EDF power plant in 1966 led to large salinity drops. The zooplankton community was mainly composed of two common brackish species: Acartia tonsa and Brachionus plicatilis. Since 2006, European litigation has strongly constrained the input of freshwater, maintaining the salinity above 15. A study was performed between 2008 and 2010 to evaluate how these modifications have impacted the zooplankton community. Our results show that the community is more diverse and contains several coastal marine species (i.e., Centropages typicus, Paracalanus parvus and Acartia clausi). A. tonsa is still present but is less abundant, whereas B. plicatilis has completely disappeared. Strong predatory marine species, such as chaetognaths, the large conspicuous autochtonous jellyfish Aurelia aurita and the invasive ctenophore Mnemiopsis leidyi, are now very common as either seasonal or permanent features of the lagoon.


Marine Pollution Bulletin | 2014

PCB concentrations in plankton size classes, a temporal study in Marseille Bay, Western Mediterranean Sea

Marion Tiano; Jacek Tronczynski; Mireille Harmelin-Vivien; Céline Tixier; François Carlotti

PCB levels in plankton were investigated in the Bay of Marseille, Western Mediterranean Sea, between September 2010 and October 2011. Concentrations of PCB congeners (CB 18, CB 52, CB 101, CB 118, CB 138, CB 153, CB 180) were determined in three plankton size-classes (60-200, 200-500 and 500-1000μm) together with different parameters: chlorophyll content, plankton dry-weight biomass, carbon and nitrogen stable isotope ratios and plankton-community structure. The ∑PCB7 concentrations ranged between 14.2 and 88.1ngg(-1)d.w., for all size classes and all sampling periods. The results do not show the biomass dilution effect and indicate moderate but significant biomagnification with plankton trophic position estimated by δ(15)N signatures. Equilibrium with water phase may notably contribute in controlling the PCB levels in the plankton. More generally, presented results imply that PCB accumulation in the plankton is an effect of abiotic and trophic complex interactions in the Bay of Marseille.


Philosophical Transactions of the Royal Society A | 1993

Modelling Water Column Processes in the North Sea [and Discussion]

Günther Radach; M. Regener; François Carlotti; Wilfried Kühn; Andreas Moll; J. W. Loder

In the North Sea advective transports are not negligible. Nevertheless, physical properties like sea surface temperature (SST) can be hindcasted with sufficient precision by vertical process water column models. Annual cycles of SST in the southern, central, and northern North Sea can be simulated using physical upper layer models with relatively small RMS errors. For the Fladenground Experiment (FLEX’76) in the northern North Sea the RMS error is less 0.3 °C for the 2 months of the experiment. This justifies the initial use, at least, of vertical process water column models in simulations for investigating transfer processes in the planktonic ecosystem. Experiments have shown that the simulated entrainment velocities at the bottom of the mixed layer during summer are critically dependent on the resolution of the forcing variables. The effects of this resolution on the annual phytoplankton dynamics will be discussed. Phytoplankton dynamics are strongly influenced by those of the zooplankton, and vice versa. Several field investigations have shown that, seemingly, phytoplankton cannot sustain the observed stock of zooplankton in the northern North Sea: there exists a gap between the abundance of phytoplankton and the need for it to maintain the zooplankton. Revisiting FLEX’76, the simulations with water column models of increasing complexity concerning detritus suggest that pelagic detritus can fill the gap in food availability for the zooplankton. If it is assumed that the zooplankton feeds also on detritus, the zooplankton experiences no food shortage.


Phil. Trans. R. Soc.#N##TAB##TAB##TAB##TAB#Lond. A | 1994

Modelling water column processes in the North Sea

Günther Radach; M. Regener; François Carlotti; Wilfried Kühn; Andreas Moll

In the North Sea advective transports are not negligible. Nevertheless, physical properties like sea surface temperature (sst) can be hindcasted with sufficient precision by vertical process water column models. Annual cycles of sst in the southern, central, and northern North Sea can be simulated using physical upper layer models with relatively small rms errors. For the Fladenground Experiment (FLEX’76) in the northern North Sea the rms error is less 0.3 °C for the 2 months of the experiment. This justifies the initial use, at least, of vertical process water column models in simulations for investigating transfer processes in the planktonic ecosystem. Experiments have shown that the simulated entrainment velocities at the bottom of the mixed layer during summer are critically dependent on the resolution of the forcing variables. The effects of this resolution on the annual phytoplankton dynamics will be discussed.


Biogeosciences Discussions | 2018

Mesozooplankton structure and functioning in the western tropicalSouth Pacific along the 20° parallel south during the OUTPACEsurvey (February–April 2015)

François Carlotti; Marc Pagano; Loïc Guilloux; Katty Donoso; Valentina Valdés; Brian P. V. Hunt

GENERAL COMMENTS The present manuscript is part of the OUTPACE Experiment, a multidisciplinary effort to study the functioning of the western tropical South Pacific ecosystems and associated biogeochemical cycles. In that sense, the work presented by Carlotti et al. matches the scope of Biogeochemistry, since it includes the description of the mesozooplankton compartment as part of the studied ecosystems. It presents valuable information about mesozooplankton abundance, diversity and biomass, including a stable isotope analysis and estimations of carbon demand, grazing impact and zooplankton excretion rates in a poorly studied area, adding value


Journal of Geophysical Research | 2017

Trophic pathways of phytoplankton size classes through the zooplankton food web over the spring transition period in the north‐west Mediterranean Sea

Brian P. V. Hunt; François Carlotti; Katty Donoso; Marc Pagano; Fabrizio D'Ortenzio; Vincent Taillandier; Pascal Conan

Knowledge of the relative contributions of phytoplankton size classes to zooplankton biomass is necessary to understand food-web functioning and response to climate change. During the Deep Water formation Experiment (DEWEX), conducted in the northwest Mediterranean Sea in winter (February) and spring (April) of 2013, we investigated phytoplankton-zooplankton trophic links in contrasting oligotrophic and eutrophic conditions. Size fractionated particulate matter (pico-POM, nano-POM, and micro-POM) and zooplankton (64 to >4000 lm) composition and carbon and nitrogen stable isotope ratios were measured inside and outside the nutrient-rich deep convection zone in the central Liguro-Provencal basin. In winter, phytoplankton biomass was low (0.28 mg m 23) and evenly spread among picophytoplankton, nanophyto-plankton, and microphytoplankton. Using an isotope mixing model, we estimated average contributions to zooplankton biomass by pico-POM, nano-POM, and micro-POM of 28, 59, and 15%, respectively. In spring, the nutrient poor region outside the convection zone had low phytoplankton biomass (0.58 mg m 23) and was dominated by pico/nanophytoplankton. Estimated average contributions to zooplankton biomass by pico-POM, nano-POM, and micro-POM were 64, 28 and 10%, respectively, although the model did not differentiate well between pico-POM and nano-POM in this region. In the deep convection zone, spring phyto-plankton biomass was high (1.34 mg m 23) and dominated by micro/nano phytoplankton. Estimated average contributions to zooplankton biomass by pico-POM, nano-POM, and micro-POM were 42, 42, and 20%, respectively, indicating that a large part of the microphytoplankton biomass may have remained ungrazed. Plain Language Summary The grazing of zooplankton on algal phytoplankton is a critical step in the transfer of energy through all ocean food webs. Although microscopic, phytoplankton span an enormous size range. The smallest picophytoplankton are generally thought to be too small to be directly grazed by zooplankton, resulting in less efficient energy transfer through the food web. This has implications for our future oceans where warming and lower nutrient supply are predicted to favor picophytoplankton over the larger nanosize and microsize classes. We tested the importance of phytoplankton size classes in the transfer of energy to zooplankton in the northwest Mediterranean Sea, where conditions naturally result in contrasting regions of small and large phytoplankton dominance. Contrary to expectation, biochemical tracers showed that microphytoplankton never contributed more than 20% to zooplankton biomass, even in regions where microphytoplankton were plentiful. On the other hand, picophytoplankton contributed 25-65% to zooplankton biomass. This finding indicates that there are well-established food-web pathways from picophytoplankton to zooplankton, and that these pathways play an important role even in ocean regions where microphytoplankton dominate. Accordingly, a decline in phytoplankton size classes may have a greater effect on carbon sequestration than on food-web productivity.


PLOS ONE | 2013

A mechanistic individual-based model of the feeding processes for Oikopleura dioica

Maxime Vaugeois; Frédéric Diaz; François Carlotti

A mechanistic physiological model of the appendicularian Oikopleura dioica has been built to represent its three feeding processes (filtration, ingestion and assimilation). The mathematical formulation of these processes is based on laboratory observations from the literature, and tests different hypotheses. This model accounts for house formation dynamics, the food storage capacity of the house and the gut throughput dynamics. The half-saturation coefficient for ingestion resulting from model simulations is approximately 28 and is independent of the weight of the organism. The maximum food intake for ingestion is also a property of the model and depends on the weight of the organism. Both are in accordance with data from the literature. The model also provides a realistic representation of carbon accumulation within the house. The modelled half-saturation coefficient for assimilation is approximately 15 and is also independent of the weight of the organism. Modelled gut throughput dynamics are based on faecal pellet formation by gut compaction. Model outputs showed that below a food concentration of 30 , the faecal pellet weight should represent a lower proportion of the body weight of the organism, meaning that the faecal pellet formation is not driven by gut filling. Simulations using fluctuating environmental food availability show that food depletion is not immediately experienced by the organism but that it occurs after a lag time because of house and gut buffering abilities. This lag time duration lasts at least 30 minutes and can reach more than 2 hours, depending on when the food depletion occurs during the house lifespan.

Collaboration


Dive into the François Carlotti's collaboration.

Top Co-Authors

Avatar

Marc Pagano

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Katty Donoso

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Brian P. V. Hunt

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Lefèvre

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

L. Eisenhauer

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng Zhou

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar

Roger P. Harris

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge