François D. Boussin
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François D. Boussin.
Science | 2015
Rachel Litman Flynn; Kelli E. Cox; Maya Jeitany; Hiroaki Wakimoto; Alysia R. Bryll; Neil J. Ganem; Francesca Bersani; Jose R. Pineda; Mario L. Suvà; Cyril H. Benes; Daniel A. Haber; François D. Boussin; Lee Zou
Cancers alternative means to an end To stay alive and proliferating, tumor cells must maintain their telomeres: the DNA sequences at the ends of chromosomes. The majority accomplish this by activating the enzyme telomerase. However, certain tumor types favor a different mechanism called alternative lengthening of telomeres (ALT), which involves DNA recombination. Flynn et al. delineated the molecular events that occur at the telomeres of ALT-proficient tumor cells by studying the function of a protein that is altered by mutation in these tumors. The analysis revealed a specific protein kinase that is essential for ALT, which could in principle be targeted to halt tumor growth. Science, this issue p. 273 A potential therapeutic strategy is identified for tumor cells that maintain their telomeres by an unusual mechanism. Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers. Here, we show that ATRX loss compromises cell-cycle regulation of the telomeric noncoding RNA TERRA and leads to persistent association of replication protein A (RPA) with telomeres after DNA replication, creating a recombinogenic nucleoprotein structure. Inhibition of the protein kinase ATR, a critical regulator of recombination recruited by RPA, disrupts ALT and triggers chromosome fragmentation and apoptosis in ALT cells. The cell death induced by ATR inhibitors is highly selective for cancer cells that rely on ALT, suggesting that such inhibitors may be useful for treatment of ALT-positive cancers.
Oncogene | 2005
Gaëlle Pennarun; Christine Granotier; Laurent Gauthier; Dennis Gomez; Françoise Hoffschir; Eliane Mandine; Jean-François Riou; Jean-Louis Mergny; Patrick Mailliet; François D. Boussin
Telomerase represents a relevant target for cancer therapy. Molecules able to stabilize the G-quadruplex (G4), a structure adopted by the 3′-overhang of telomeres, are thought to inhibit telomerase by blocking its access to telomeres. We investigated the cellular effects of four new 2,6-pyridine-dicarboxamide derivatives displaying strong selectivity for G4 structures and strong inhibition of telomerase in in vitro assays. These compounds inhibited cell proliferation at very low concentrations and then induced a massive apoptosis within a few days in a dose-dependent manner in cultures of three telomerase-positive glioma cell lines, T98G, CB193 and U118-MG. They had also antiproliferative effects in SAOS-2, a cell line in which telomere maintenance involves an alternative lengthening of telomeres (ALT) mechanism. We show that apoptosis was preceded by multiple alterations of the cell cycle: activation of S-phase checkpoints, dramatic increase of metaphase duration and cytokinesis defects. These effects were not associated with telomere shortening, but they were directly related to telomere instability involving telomere end fusion and anaphase bridge formation. Pyridine-based G-quadruplex ligands are therefore promising agents for the treatment of various tumors including malignant gliomas.
Nucleic Acids Research | 2005
Christine Granotier; Gaëlle Pennarun; Lydia Riou; Françoise Hoffschir; Laurent Gauthier; Anne De Cian; Dennis Gomez; Eliane Mandine; Jean-François Riou; Jean-Louis Mergny; Patrick Mailliet; Bernard Dutrillaux; François D. Boussin
The G-overhangs of telomeres are thought to adopt particular conformations, such as T-loops or G-quadruplexes. It has been suggested that G-quadruplex structures could be stabilized by specific ligands in a new approach to cancer treatment consisting in inhibition of telomerase, an enzyme involved in telomere maintenance and cell immortality. Although the formation of G-quadruplexes was demonstrated in vitro many years ago, it has not been definitively demonstrated in living human cells. We therefore investigated the chromosomal binding of a tritiated G-quadruplex ligand, 3H-360A (2,6-N,N′-methyl-quinolinio-3-yl)-pyridine dicarboxamide [methyl-3H]. We verified the in vitro selectivity of 3H-360A for G-quadruplex structures by equilibrium dialysis. We then showed by binding experiments with human genomic DNA that 3H-360A has a very potent selectivity toward G-quadruplex structures of the telomeric 3′-overhang. Finally, we performed autoradiography of metaphase spreads from cells cultured with 3H-360A. We found that 3H-360A was preferentially bound to chromosome terminal regions of both human normal (peripheral blood lymphocytes) and tumor cells (T98G and CEM1301). In conclusion, our results provide evidence that a specific G-quadruplex ligand interacts with the terminal ends of human chromosomes. They support the hypothesis that G-quadruplex ligands induce and/or stabilize G-quadruplex structures at telomeres of human cells.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Christian Boehler; Laurent Gauthier; Oliver Mortusewicz; Denis Biard; Jean-Michel Saliou; Anne Bresson; Sarah Sanglier-Cianférani; Susan Smith; Valérie Schreiber; François D. Boussin; Françoise Dantzer
The ADP ribosyl transferase [poly(ADP-ribose) polymerase] ARTD3(PARP3) is a newly characterized member of the ARTD(PARP) family that catalyzes the reaction of ADP ribosylation, a key posttranslational modification of proteins involved in different signaling pathways from DNA damage to energy metabolism and organismal memory. This enzyme shares high structural similarities with the DNA repair enzymes PARP1 and PARP2 and accordingly has been found to catalyse poly(ADP ribose) synthesis. However, relatively little is known about its in vivo cellular properties. By combining biochemical studies with the generation and characterization of loss-of-function human and mouse models, we describe PARP3 as a newcomer in genome integrity and mitotic progression. We report a particular role of PARP3 in cellular response to double-strand breaks, most likely in concert with PARP1. We identify PARP3 as a critical player in the stabilization of the mitotic spindle and in telomere integrity notably by associating and regulating the mitotic components NuMA and tankyrase 1. Both functions open stimulating prospects for specifically targeting PARP3 in cancer therapy.
PLOS ONE | 2009
Françoise Lazarini; Marc-André Mouthon; Gilles Gheusi; Fabrice de Chaumont; Jean-Christophe Olivo-Marin; S. Lamarque; Djoher Nora Abrous; François D. Boussin; Pierre-Marie Lledo
Background In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. Methodology/Principal Findings In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation. Conclusion/Significance These findings suggest that the continuous production of adult-generated neurons is involved in consolidating or restituting long-lasting olfactory traces.
Journal of Cell Science | 2009
Jean-Christophe Amé; Elise Fouquerel; Laurent Gauthier; Denis Biard; François D. Boussin; Françoise Dantzer; Gilbert de Murcia; Valérie Schreiber
Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glycohydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy.
Frontiers in Behavioral Neuroscience | 2010
Claudia E. Feierstein; Françoise Lazarini; Sébastien Wagner; Marie-Madeleine Gabellec; Fabrice de Chaumont; Jean-Christophe Olivo-Marin; François D. Boussin; Pierre-Marie Lledo; Gilles Gheusi
Adult-born neurons arrive to the olfactory bulb (OB) and integrate into the existing circuit throughout life. Despite the prevalence of this phenomenon, its functional impact is still poorly understood. Recent studies point to the importance of newly generated neurons to olfactory learning and memory. Adult neurogenesis is regulated by a variety of factors, notably by instances related to reproductive behavior, such as exposure to mating partners, pregnancy and lactation, and exposure to offspring. To study the contribution of olfactory neurogenesis to maternal behavior and social recognition, here we selectively disrupted OB neurogenesis using focal irradiation of the subventricular zone in adult female mice. We show that reduction of olfactory neurogenesis results in an abnormal social interaction pattern with male, but not female, conspecifics; we suggest that this effect could result from the inability to detect or discriminate male odors and could therefore have implications for the recognition of potential mating partners. Disruption of OB neurogenesis, however, neither impaired maternal-related behaviors, nor did it affect the ability of mothers to discriminate their own progeny from others.
Oncogene | 2000
Stéphane Haïk; Laurent Gauthier; Christine Granotier; Jean-Michel Peyrin; Céline Silva Lages; Dominique Dormont; François D. Boussin
During brain development, neuronal and glial cells are generated from neural precursors on a precise schedule involving steps of proliferation, fate commitment and differentiation. We report that telomerase activity is highly expressed during embryonic murine cortical neurogenesis and early steps of gliogenesis and progressively decreases thereafter during cortex maturation to be undetectable in the normal adult brain. We evidenced neural precursor cells (NPC) as the principal telomerase-expressing cells in primary cultures from E15 mouse embryo cortices. Their differentiation either in neurons or in glial cells lead to a down regulation of telomerase activity that was directly correlated to the decrease of telomerase core protein (mTERT) mRNA synthesis. Furthermore, we show that FGF2 (fibroblast growth factor 2), one of the main regulators of CNS development, induces a dose-dependant increase of both the proliferation of NPC and telomerase activity in primary cortical cultures without affecting the mTERT mRNA synthesis compared to that of glyceraldehyde-3-phosphate dehydrogenase (mGAPDH). Finally, we evidenced that AZT (3′-azido-2′,3′-dideoxythymidine), known to inhibit telomerase activity, blocks in a dose dependant manner the FGF2-induced proliferation of NPC. Altogether, our results are in favor of an important role of telomerase activity during brain organogenesis.
Radiation Research | 2006
Ewa Nowak; Olivier Etienne; Pascal Millet; Céline Silva Lages; Céline Mathieu; Marc-André Mouthon; François D. Boussin
Abstract Nowak, E., Etienne, O., Millet, P., Silva Lages, C., Mathieu, C., Mouthon, M. A. and Boussin, F. D. Radiation-Induced H2AX Phosphorylation and Neural Precursor Apoptosis in the Developing Brain of Mice. Radiat. Res. 165, 155–164 (2006). We showed that γ irradiation of the developing mouse brain with 2 Gy induced a massive apoptosis of neural precursors but not of neurons within 24 h. Successive phosphorylation and dephosphorylation of histone H2AX have been linked to DNA breaks and repair. Similar numbers of nuclear foci of phosphorylated H2AX (γ-H2AX) were found 1 h postirradiation in neural precursors and in neurons, suggesting that differences in radiosensitivity were not related to variations in the numbers of DNA double-strand breaks induced by radiation. Surviving neural precursors like neurons totally lost γ-H2AX within 24 h after irradiation, but they had a slower kinetics of loss of γ-H2AX foci. This suggests that the DNA repair machinery processed damage more slowly in these neural precursors in relation to their greater radiosensitivity. We also found a bright and diffuse γ-H2AX staining of nuclei of cells at an early stage of apoptosis, whereas cells at later stages of apoptosis were unstained. This was probably related to phosphorylation and subsequent degradation of H2AX in the course of DNA fragmentation during apoptosis. Detection of γ-H2AX-bright nuclei may thus be a useful marker of neural cells at an early stage of apoptosis.
Embo Molecular Medicine | 2013
Jose R. Pineda; Mathieu Daynac; Alexandra Chicheportiche; Arantxa Cebrián-Silla; Karine Sii Felice; Jose Manuel Garcia-Verdugo; François D. Boussin; Marc-André Mouthon
Neurogenesis decreases during aging and following cranial radiotherapy, causing a progressive cognitive decline that is currently untreatable. However, functional neural stem cells remained present in the subventricular zone of high dose‐irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover, we observed a marked increase in TGF‐β1 production by endothelial cells in the stem cell niche in both middle‐aged and irradiated mice. In co‐cultures, irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF‐β/Smad3 signalling. Strikingly, the blockade of TGF‐β signalling in vivo using a neutralizing antibody or the selective inhibitor SB‐505124 significantly improved neurogenesis in aged and irradiated mice, prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti‐TGF‐β‐based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.