François Eyskens
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Eyskens.
Journal of Medical Genetics | 2004
L. De Meirleir; S. Seneca; Willy Lissens; I De Clercq; François Eyskens; Erik Gerlo; Joél Smet; R. Van Coster
In patients with mitochondrial encephalomyopathies an increasing number of causative gene defects have been detected. The number of identified pathogenic mitochondrial DNA mutations has largely increased over the past 15 years. Recently, much attention has turned to the investigation of nuclear oxidative phosphorylation (OXPHOS) gene defects. Within the OXPHOS defects, complex V deficiency is rarely found and, so far, these defects have only been attributed to mutations in the mitochondrial MTATP6 gene. Mutation analysis of the complete coding regions at the cDNA level of the nuclear ATP11, ATP12, ATPα, ATPβ and ATPγ genes and the mitochondrial MTATP6 and MTAT8 genes was undertaken in two unrelated patients. Blue Native polyacrylamide gel electrophoresis followed by catalytic staining had already documented their complex V decreased activity. Extensive molecular analysis of five nuclear and two mitochondrial genes revealed a mutation in the ATP12 assembly gene in one patient. This mutation is believed to be the cause of the impaired complex V activity. To our knowledge, this is the first report of a pathogenic mutation in a human nuclear encoded ATPase assembly gene.
Human Molecular Genetics | 2013
Nikhita Ajit Bolar; Arnaud Vanlander; Claudia Wilbrecht; Nathalie Van der Aa; Joél Smet; Boel De Paepe; Geert Vandeweyer; Frank Kooy; François Eyskens; Elien De Latter; Gwenda Delanghe; Paul Govaert; Jules G. Leroy; Bart Loeys; Roland Lill; Lut Van Laer; Rudy Van Coster
Two siblings from consanguineous parents died perinatally with a condition characterized by generalized hypotonia, respiratory insufficiency, arthrogryposis, microcephaly, congenital brain malformations and hyperglycinemia. Catalytic activities of the mitochondrial respiratory complexes I and II were deficient in skeletal muscle, a finding suggestive of an inborn error in mitochondrial biogenesis. Homozygosity mapping identified IBA57 located in the largest homozygous region on chromosome 1 as a culprit candidate gene. IBA57 is known to be involved in the biosynthesis of mitochondrial [4Fe-4S] proteins. Sequence analysis of IBA57 revealed the homozygous mutation c.941A > C, p.Gln314Pro. Severely decreased amounts of IBA57 protein were observed in skeletal muscle and cultured skin fibroblasts from the affected subjects. HeLa cells depleted of IBA57 showed biochemical defects resembling the ones found in patient-derived cells, including a decrease in various mitochondrial [4Fe-4S] proteins and in proteins covalently linked to lipoic acid (LA), a cofactor produced by the [4Fe-4S] protein LA synthase. The defects could be complemented by wild-type IBA57 and partially by mutant IBA57. As a result of the mutation, IBA57 protein was excessively degraded, an effect ameliorated by protease inhibitors. Hence, we propose that the mutation leads to partial functional impairment of IBA57, yet the major pathogenic impact is due to its proteolytic degradation below physiologically critical levels. In conclusion, the ensuing lethal complex biochemical phenotype of a novel metabolic syndrome results from multiple Fe/S protein defects caused by a deficiency in the Fe/S cluster assembly protein IBA57.
Journal of Medical Genetics | 2017
Derralynn Hughes; Kathleen Nicholls; Suma P. Shankar; Gere Sunder-Plassmann; David M. Koeller; Khan Nedd; Gerard Vockley; Takashi Hamazaki; Robin H. Lachmann; Toya Ohashi; Iacopo Olivotto; Norio Sakai; Patrick Deegan; David Dimmock; François Eyskens; Dominique P. Germain; Ozlem Goker-Alpan; Eric Hachulla; Ana Jovanovic; Charles Marques Lourenço; Ichiei Narita; Mark Thomas; William R. Wilcox; Daniel G. Bichet; Raphael Schiffmann; Elizabeth Ludington; Christopher Viereck; John Kirk; Julie Yu; Franklin K. Johnson
Background Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking. Methods The main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed. Results Fifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (−6.6 g/m2 (−11.0 to −2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated. Conclusions Migalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations. Trial registration number: NCT00925301; Pre-results.
PLOS ONE | 2015
David G. Warnock; Daniel G. Bichet; Myrl Holida; Ozlem Goker-Alpan; Kathy Nicholls; Mark Thomas; François Eyskens; Suma P. Shankar; Mathews Adera; Sheela Sitaraman; Richie Khanna; John J. Flanagan; Brandon Wustman; Jay Barth; Carrolee Barlow; Kenneth J. Valenzano; David J. Lockhart; Pol Boudes; Franklin K. Johnson
Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. Trial Registration ClinicalTrials.gov NCT01196871
BMC Clinical Pathology | 2009
Frank Roels; Patrick Verloo; François Eyskens; Baudouin François; Sara Seneca; Boel De Paepe; Jean-Jacques Martin; Valerie Meersschaut; Marleen Praet; Emmanuel Scalais; Marc Espeel; Joél Smet; Gert Van Goethem; Rudy Van Coster
BackgroundIn muscle cytochrome oxidase (COX) negative fibers (mitochondrial mosaics) have often been visualized.MethodsCOX activity staining of liver for light and electron microscopy, muscle stains, blue native gel electrophoresis and activity assays of respiratory chain proteins, their immunolocalisation, mitochondrial and nuclear DNA analysis.ResultsThree unrelated infants showed a mitochondrial mosaic in the liver after staining for COX activity, i.e. hepatocytes with strongly reactive mitochondria were found adjacent to cells with many negative, or barely reactive, mitochondria. Deficiency was most severe in the patient diagnosed with Pearson syndrome. Ragged-red fibers were absent in muscle biopsies of all patients. Enzyme biochemistry was not diagnostic in muscle, fibroblasts and lymphocytes. Blue native gel electrophoresis of liver tissue, but not of muscle, demonstrated a decreased activity of complex IV; in both muscle and liver subcomplexes of complex V were seen. Immunocytochemistry of complex IV confirmed the mosaic pattern in two livers, but not in fibroblasts. MRI of the brain revealed severe white matter cavitation in the Pearson case, but only slight cortical atrophy in the Alpers-Huttenlocher patient, and a normal image in the 3rd. MtDNA in leucocytes showed a common deletion in 50% of the mtDNA molecules of the Pearson patient. In the patient diagnosed with Alpers-Huttenlocher syndrome, mtDNA was depleted for 60% in muscle. In the 3rd patient muscular and hepatic mtDNA was depleted for more than 70%. Mutations in the nuclear encoded gene of POLG were subsequently found in both the 2nd and 3rd patients.ConclusionHistoenzymatic COX staining of a liver biopsy is fast and yields crucial data about the pathogenesis; it indicates whether mtDNA should be assayed. Each time a mitochondrial disorder is suspected and muscle data are non-diagnostic, a liver biopsy should be recommended. Mosaics are probably more frequent than observed until now. A novel pathogenic mutation in POLG is reported.Tentative explanations for the mitochondrial mosaics are, in one patient, unequal partition of mutated mitochondria during mitoses, and in two others, an interaction between products of several genes required for mtDNA maintenance.
Clinical Neurology and Neurosurgery | 2013
Isabel De Brabander; Laetitia Yperzeele; Chantal Ceuterick-de Groote; Raf Brouns; R Baker; Shibeshih Belachew; Jean Delbecq; Gilles W. De Keulenaer; Sophie Dethy; François Eyskens; Arnaud Fumal; Dimitri Hemelsoet; Derralynn Hughes; Sandrine Jeangette; Dirk Nuytten; Patricia Redondo; Bernard Sadzot; Christian Sindic; Rishi Sheorajpanday; Vincent Thijs; Christine Van Broeckhoven; Peter Paul De Deyn
OBJECTIVE In the Belgian Fabry Study (BeFaS), the prevalence of Fabry disease was assessed in 1000 young patients presenting with stroke, unexplained white matter lesions or vertebrobasilar dolichoectasia. The results of the BeFaS suggested that Fabry disease may play a role in up to 1% of young patients presenting with cerebrovascular disease. However, the clinical relevance was unclear in all cases. We report on detailed phenotyping in subjects identified with α-galactosidase A (α-Gal A) enzyme deficiency or GLA mutations identified in the BeFaS (n=10), and on the results of family screening in this population. METHODS Family screening was performed to identify additional mutation carriers. Biochemical and/or clinical evaluation of all subjects (BeFaS index patients and relatives carrying a GLA mutation) was performed. RESULTS Genetic family screening revealed 18 additional GLA mutation carriers. Bloodspot α-Gal A enzyme activity was normal in all GLA mutation carriers, even in 2 males with the p.A143T mutation. Plasma Gb3 and lyso-Gb3 levels were normal in all subjects. Elevated Gb3 in urine was detected in 2 subjects. Some classic clinical signs of Fabry disease, like angiokeratoma or cornea verticillata, could not be detected in our population. Cardiac symptoms of Fabry disease were found in 6 out of 10 p.A143T carriers. No signs of cerebrovascular disease were found in the relatives with a GLA mutation. CONCLUSIONS We could not identify mutations causing the classical clinical phenotype of Fabry disease in our cerebrovascular disease population. Enzyme activity analysis in bloodspots and plasma may fail to identify late-onset variants of Fabry disease. We recommend genetic testing when an atypical, late-onset variant of Fabry disease is suspected in a male cerebrovascular disease patient. However, this may lead to the identification of non-disease causing or controversial genetic variants.
Pediatric Research | 2004
Jeannette Gootjes; Orly Elpeleg; François Eyskens; Hanna Mandel; Delphine Mitanchez; Noboyuki Shimozawa; Yasuyuki Suzuki; Hans R. Waterham
The peroxisome biogenesis disorders (PBDs) form a genetically and clinically heterogeneous group of disorders due to defects in at least 11 distinct genes. The prototype of this group of disorders is Zellweger syndrome (ZS) with neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) as milder variants. Common to PBDs are liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness. PBD patients belonging to complementation group 10 (CG10) have mutations in the PEX2 gene (PXMP3), which codes for a protein (PEX2) that contains two transmembrane domains and a zinc-binding domain considered to be important for its interaction with other proteins of the peroxisomal protein import machinery. We report on the identification of four PBD patients belonging to CG10. Sequence analysis of their PEX2 genes revealed 4 different mutations, 3 of which have not been reported before. Two of the patients had homozygous mutations leading to truncated proteins lacking both transmembrane domains and the zinc-binding domain. These mutations correlated well with their severe phenotypes. The third patient had a homozygous mutation leading to the absence of the zinc-binding domain (W223X) and the fourth patient had a homozygous mutation leading to the change of the second cysteine residue of the zinc-binding domain (C247R). Surprisingly, the patient lacking the domain had a mild phenotype, whereas the C247R patient had a severe phenotype. This might be due to an increased instability of PEX2 due to the R for C substitution or to a dominant negative effect on interacting proteins.
Journal of Inherited Metabolic Disease | 2009
Raf Brouns; François Eyskens; K. De Boeck; Chantal Ceuterick-de Groote; M Van den Broeck; C. Van Broeckhoven; P.P. De Deyn
SummaryWe report a unique case with co-occurrence of Turner syndrome and Fabry disease (OMIM #301500). The latter is a rare X-linked lysosomal storage disease that is characterized by partial or complete deficiency of α-galactosidase A (GLA; EC 3.2.1.22) following mutations in the gene (GLA) localized at Xq22.1. Accumulation of metabolic intermediates can occur in many tissues and leads to severe morbidity, especially due to renal failure, cardiac involvement and stroke. It is well established that hemizygous male mutation carriers with Fabry disease are generally more severely affected than heterozygous female mutation carriers, but disabling clinical features and disease progression often occur in female Fabry patients as well. The majority of this patient’s cells are of the 45,X type, making her a hemizygous GLA mutation carrier displaying a very severe Fabry disease phenotype.
Stroke | 2011
Raf Brouns; Vincent Thijs; François Eyskens; Peter Paul De Deyn
Response: We thank Drs Lidove, Joly, and Touze1 for their interest in our publications with regard to screening for Fabry disease in stroke patients, and for their analysis of currently available epidemiological data.2,–,6 Several issues, however, preclude drawing solid conclusions from their meta-analysis. First, relevant heterogeneity in the study designs exists, especially with regard to the stroke subtype, the stroke etiology, and the demographic data, and even the screening methodology should be taken into account.2,4,5 Second, limiting screening for Fabry disease to cryptogenic stroke patients may result in selection bias because the condition is known to be associated …
Frontiers in Neurology | 2018
Lothar Hauth; Jeroen Kerstens; Laetitia Yperzeele; François Eyskens; Paul M. Parizel; Barbara Willekens
Introduction A 16-year-old male presented with episodic headaches and a brain magnetic resonance imaging (MRI) that showed multifocal punctate to patchy white matter lesions. The diagnosis of Fabry disease (FD) was suggested upon the finding of significantly reduced plasma alpha-galactosidase A activity (0.62 µmol/L or 13% of normal; normal range ≥ 1.65 μmol/L) and genetic investigation confirmed the presence of a hemizygous missense variant in the galactosidase alpha (GLA) gene (p.A143T). Baseline assessment of other systemic involvement showed only a discrete proteinuria. Background FD is a rare lysosomal storage disorder. Genetic screening studies have revealed over 600 variants in the GLA gene. The p.A143T variant is a genetic variant of unknown significance, with its associated phenotype ranging from classical FD to healthy unaffected patients. Some authors, however, deem this variant non-pathogenic. We describe the case of a 16-year-old male with multifocal white matter lesions on brain MRI, who was diagnosed with FD and carried this genetic variant. Discussion The causative p.A143T mutation can be associated with a more severe subclinical phenotype than has been reported to date. Furthermore, a diagnosis of FD should be considered when finding asymptomatic cerebral white matter lesions in a young patient.