Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Foulquier is active.

Publication


Featured researches published by François Foulquier.


Nature Genetics | 2008

Impaired glycosylation and cutis laxa caused by mutations in the vesicular H + -ATPase subunit ATP6V0A2

Uwe Kornak; Ellen Reynders; Aikaterini Dimopoulou; Jeroen van Reeuwijk; Bjoern Fischer; Anna Rajab; Birgit Budde; Peter Nürnberg; François Foulquier; Dirk J. Lefeber; Zsolt Urban; Stephanie Gruenewald; Wim Annaert; Han G. Brunner; Hans van Bokhoven; Ron A. Wevers; Eva Morava; Gert Matthijs; Lionel Van Maldergem; Stefan Mundlos

We identified loss-of-function mutations in ATP6V0A2, encoding the a2 subunit of the V-type H+ ATPase, in several families with autosomal recessive cutis laxa type II or wrinkly skin syndrome. The mutations result in abnormal glycosylation of serum proteins (CDG-II) and cause an impairment of Golgi trafficking in fibroblasts from affected individuals. These results indicate that the a2 subunit of the proton pump has an important role in Golgi function.


American Journal of Human Genetics | 2008

Oligosaccharyltransferase-Subunit Mutations in Nonsyndromic Mental Retardation

Florence Molinari; François Foulquier; Patrick Tarpey; Willy Morelle; Sarah Boissel; Jon Teague; Sarah Edkins; P. Andrew Futreal; Michael R. Stratton; Gillian Turner; Gert Matthijs; Jozef Gecz; Arnold Munnich; Laurence Colleaux

Mental retardation (MR) is the most frequent handicap among children and young adults. Although a large proportion of X-linked MR genes have been identified, only four genes responsible for autosomal-recessive nonsyndromic MR (AR-NSMR) have been described so far. Here, we report on two genes involved in autosomal-recessive and X-linked NSMR. First, autozygosity mapping in two sibs born to first-cousin French parents led to the identification of a region on 8p22-p23.1. This interval encompasses the gene N33/TUSC3 encoding one subunit of the oligosaccharyltransferase (OTase) complex, which catalyzes the transfer of an oligosaccharide chain on nascent proteins, the key step of N-glycosylation. Sequencing N33/TUSC3 identified a 1 bp insertion, c.787_788insC, resulting in a premature stop codon, p.N263fsX300, and leading to mRNA decay. Surprisingly, glycosylation analyses of patient fibroblasts showed normal N-glycan synthesis and transfer, suggesting that normal N-glycosylation observed in patient fibroblasts may be due to functional compensation. Subsequently, screening of the X-linked N33/TUSC3 paralog, the IAP gene, identified a missense mutation (c.932T-->G, p.V311G) in a family with X-linked NSMR. Recent studies of fucosylation and polysialic-acid modification of neuronal cell-adhesion glycoproteins have shown the critical role of glycosylation in synaptic plasticity. However, our data provide the first demonstration that a defect in N-glycosylation can result in NSMR. Together, our results demonstrate that fine regulation of OTase activity is essential for normal cognitive-function development, providing therefore further insights to understand the pathophysiological bases of MR.


Annals of Neurology | 2012

DPM2-CDG: A muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy

Rita Barone; Chiara Aiello; Valerie Race; Eva Morava; François Foulquier; Moniek Riemersma; Chiara Passarelli; Daniela Concolino; Massimo Carella; Filippo M. Santorelli; Wendy Vleugels; Eugenio Mercuri; Domenico Garozzo; Luisa Sturiale; Sonia Messina; Jaak Jaeken; Agata Fiumara; Ron A. Wevers; Enrico Bertini; Gert Matthijs; Dirk J. Lefeber

Congenital disorders of glycosylation (CDG) are a group of metabolic diseases due to defects in protein and lipid glycosylation. We searched for the primary defect in 3 children from 2 families with a severe neurological phenotype, including profound developmental delay, intractable epilepsy, progressive microcephaly, severe hypotonia with elevated blood creatine kinase levels, and early fatal outcome. There was clinical evidence of a muscular dystrophy–dystroglycanopathy syndrome, supported by deficient O‐mannosylation by muscle immunohistochemistry.


Human Molecular Genetics | 2009

Golgi function and dysfunction in the first COG4-deficient CDG type II patient

Ellen Reynders; François Foulquier; Elisa Leão Teles; Dulce Quelhas; Willy Morelle; Catherine Rabouille; Wim Annaert; Gert Matthijs

The conserved oligomeric Golgi (COG) complex is a hetero-octameric complex essential for normal glycosylation and intra-Golgi transport. An increasing number of congenital disorder of glycosylation type II (CDG-II) mutations are found in COG subunits indicating its importance in glycosylation. We report a new CDG-II patient harbouring a p.R729W missense mutation in COG4 combined with a submicroscopical deletion. The resulting downregulation of COG4 expression additionally affects expression or stability of other lobe A subunits. Despite this, full complex formation was maintained albeit to a lower extent as shown by glycerol gradient centrifugation. Moreover, our data indicate that subunits are present in a cytosolic pool and full complex formation assists tethering preceding membrane fusion. By extending this study to four other known COG-deficient patients, we now present the first comparative analysis on defects in transport, glycosylation and Golgi ultrastructure in these patients. The observed structural and biochemical abnormalities correlate with the severity of the mutation, with the COG4 mutant being the mildest. All together our results indicate that intact COG complexes are required to maintain Golgi dynamics and its associated functions. According to the current CDG nomenclature, this newly identified deficiency is designated CDG-IIj.


Human Molecular Genetics | 2009

Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation

Patricie Paesold-Burda; Charlotte Maag; Heinz Troxler; François Foulquier; Peter Kleinert; Siegrun Schnabel; Matthias R. Baumgartner; Thierry Hennet

The conserved oligomeric Golgi (COG) complex is a tethering factor composed of eight subunits that is involved in the retrograde transport of intra-Golgi components. Deficient biosynthesis of COG subunits leads to alterations of protein trafficking along the secretory pathway and thereby to severe diseases in humans. Since the COG complex affects the localization of several Golgi glycosyltransferase enzymes, COG deficiency also leads to defective protein glycosylation, thereby explaining the classification of COG deficiencies as forms of congenital disorders of glycosylation (CDG). To date, mutations in COG1, COG4, COG7 and COG8 genes have been associated with diseases, which range from severe multi-organ disorders to moderate forms of neurological impairment. In the present study, we describe a new type of COG deficiency related to a splicing mutation in the COG5 gene. Sequence analysis in the patient identified a homozygous intronic substitution (c.1669-15T>C) leading to exon skipping and severely reduced expression of the COG5 protein. This defect was associated with a mild psychomotor retardation with delayed motor and language development. Analysis of different serum glycoproteins revealed a CDG phenotype with typical undersialylation of N- and O-glycans. Retrograde Golgi-to-endoplasmic reticulum trafficking was markedly delayed in the patients fibroblast upon brefeldin-A treatment, which is a hallmark of COG deficiency. This trafficking delay could be restored to normal values by expressing a wild-type COG5 cDNA in the patient cells. This case demonstrates that COG deficiency and thereby CDG must be taken into consideration even in children presenting mild neurological impairments.


American Journal of Human Genetics | 2012

TMEM165 deficiency causes a congenital disorder of glycosylation.

François Foulquier; Mustapha Amyere; Jaak Jaeken; Renate Zeevaert; Els Schollen; Valerie Race; Riet Bammens; Willy Morelle; Claire Rosnoblet; Dominique Legrand; Didier Demaegd; Neil Buist; David Cheillan; Nathalie Guffon; Pierre Morsomme; Willem Annaert; Hudson H. Freeze; Emile Van Schaftingen; Miikka Vikkula; Gert Matthijs

Protein glycosylation is a complex process that depends not only on the activities of several enzymes and transporters but also on a subtle balance between vesicular Golgi trafficking, compartmental pH, and ion homeostasis. Through a combination of autozygosity mapping and expression analysis in two siblings with an abnormal serum-transferrin isoelectric focusing test (type 2) and a peculiar skeletal phenotype with epiphyseal, metaphyseal, and diaphyseal dysplasia, we identified TMEM165 (also named TPARL) as a gene involved in congenital disorders of glycosylation (CDG). The affected individuals are homozygous for a deep intronic splice mutation in TMEM165. In our cohort of unsolved CDG-II cases, we found another individual with the same mutation and two unrelated individuals with missense mutations in TMEM165. TMEM165 encodes a putative transmembrane 324 amino acid protein whose cellular functions are unknown. Using a siRNA strategy, we showed that TMEM165 deficiency causes Golgi glycosylation defects in HEK cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells.

Didier Demaegd; François Foulquier; Anne-Sophie Colinet; Louis Gremillon; Dominique Legrand; Pascal Mariot; Edgar Peiter; Emile Van Schaftingen; Gert Matthijs; Pierre Morsomme

Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Transmembrane protein 165 (TMEM165) belongs to an uncharacterized family of membrane proteins called Uncharacterized Protein Family 0016, which are well conserved throughout evolution and share characteristics reminiscent of the cation/Ca2+ exchanger superfamily. Gcr1 dependent translation factor 1 (Gdt1p), the budding yeast member of this family, contributes to Ca2+ homeostasis via an uncharacterized Ca2+ transport pathway localized in the Golgi apparatus. The gdt1Δ mutant was found to be sensitive to high concentrations of Ca2+, and interestingly, this sensitivity was suppressed by expression of TMEM165, the human ortholog of Gdt1p, indicating conservation of function among the members of this family. Patch-clamp analyses on human cells indicated that TMEM165 expression is linked to Ca2+ ion transport. Furthermore, defects in TMEM165 affected both Ca2+ and pH homeostasis. Based on these results, we propose that Gdt1p and TMEM165 could be members of a unique family of Golgi-localized Ca2+/H+ antiporters and that modification of the Golgi Ca2+ and pH balance could explain the glycosylation defects observed in TMEM165-deficient patients.


Frontiers in Bioscience | 2012

Sialyltransferases functions in cancers.

Anne Harduin-Lepers; Marie-Ange Krzewinski-Recchi; Florent Colomb; François Foulquier; Sophie Groux-Degroote; Philippe Delannoy

Abnormally elevated levels of sialylated tumor associated carbohydrate antigens are frequently described at the surface of cancer cells and/or secreted in biological fluids. It is now well established that this over-expression may result from deregulation in sialyltransferases enzymatic activity involved in their biosynthesis, but the precise molecular mechanisms remain unknown. Twenty different human sialyltransferases preside to the sialylation of glycoconjugates, either glycolipids or glycoproteins. This review summarizes the current knowledge on human sialyltransferases implicated in the altered expression of sialylated tumor associated antigens, the molecular basis of their regulated expression in cancer cells and the various tools developed by researchers and clinicians for their study in pathological samples.


Biochimica et Biophysica Acta | 2009

COG defects, birth and rise!

François Foulquier

The COG complex is a cytosolic heteromeric Golgi complex constituted of 8 subunits (Cog1 to Cog8) and involved in retrograde vesicular Golgi trafficking. The involvement of this complex in glycosylation and more specifically in Golgi glycosyltransferases localization has been highlighted with the discovery of COG subunit deficiencies leading to CDG (Congenital Disorders of Glycosylation), a group of inherited disorders of glycosylation. To date, many COG deficient CDG patients have been discovered and this article reviews the birth and rise of this group of defects. The architecture of the COG complex and its cellular functions in Golgi trafficking and Golgi glycosylation are discussed.


Biochimica et Biophysica Acta | 2012

Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition

Ludivine Drougat; Stéphanie Olivier-Van Stichelen; Marlène Mortuaire; François Foulquier; Anne-Sophie Lacoste; Jean-Claude Michalski; Tony Lefebvre; Anne-Sophie Vercoutter-Edouart

BACKGROUND DNA replication represents a critical step of the cell cycle which requires highly controlled and ordered regulatory mechanisms to ensure the integrity of genome duplication. Among a plethora of elements, post-translational modifications (PTMs) ensure the spatiotemporal regulation of pivotal proteins orchestrating cell division. Despite increasing evidences showing that O-GlcNAcylation regulates mitotic events, the impact of this PTM in the early steps of the cell cycle remains poorly understood. METHODS AND RESULTS Quiescent MCF7 cells were stimulated by serum mitogens and cell cycle progression was determined by flow cytometry. The levels of O-GlcNAc modified proteins, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) were examined by Western blotting and OGA activity was measured during the progression of cells towards S phase. A global decrease in O-GlcNAcylation was observed at S phase entry, concomitantly to an increase in the activity of OGA. A combination of two-dimensional electrophoresis, Western blotting and mass spectrometry was then used to detect and identify cell cycle-dependent putative O-GlcNAcylated proteins. 58 cytoplasmic and nuclear proteins differentially O-GlcNAcylated through G1/S transition were identified and the O-GlcNAc variations of Cytokeratin 8, hnRNP K, Caprin-1, Minichromosome Maintenance proteins MCM3, MCM6 and MCM7 were validated by immunoprecipitation. CONCLUSIONS The dynamics of O-GlcNAc is regulated during G1/S transition and observed on key proteins involved in the cytoskeleton networks, mRNA processing, translation, protein folding and DNA replication. GENERAL SIGNIFICANCE Our results led us to propose that O-GlcNAcylation joins the PTMs that take part in the regulation of DNA replication initiation.

Collaboration


Dive into the François Foulquier's collaboration.

Top Co-Authors

Avatar

Gert Matthijs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jaak Jaeken

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Willy Morelle

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Liesbeth Keldermans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Renate Zeevaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Valerie Race

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wendy Vleugels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge