Francois Frederick Maree
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francois Frederick Maree.
PLOS Computational Biology | 2010
Richard Reeve; Belinda Blignaut; Jan J. Esterhuysen; Pamela A. Opperman; Louise Matthews; Elizabeth E. Fry; Tjaart A.P. de Beer; Jacques Theron; Elizabeth Rieder; Wilna Vosloo; Hester G. O'Neill; Daniel T. Haydon; Francois Frederick Maree
Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence – by controlling for phylogenetic structure – for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease.
Virus Research | 2010
Francois Frederick Maree; Belinda Blignaut; Tjaart A.P. de Beer; Nico Visser; Elizabeth Rieder
Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures.
Nature Structural & Molecular Biology | 2015
Abhay Kotecha; Julian Seago; Katherine Anne Scott; Alison Burman; Silvia Loureiro; Jingshan Ren; Claudine Porta; Helen Mary Ginn; Terry Jackson; Eva Perez-Martin; C. Alistair Siebert; Guntram Paul; Juha T. Huiskonen; Ian M. Jones; Robert M. Esnouf; Elizabeth E. Fry; Francois Frederick Maree; Bryan Charleston; David I. Stuart
Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.
Journal of General Virology | 2011
Belinda Blignaut; Nico Visser; Jacques Theron; Elizabeth Rieder; Francois Frederick Maree
Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species.
Journal of General Virology | 2011
Francois Frederick Maree; Belinda Blignaut; Esterhuysen Jj; de Beer Ta; Jacques Theron; O'Neill Hg; Elizabeth Rieder
Foot-and-mouth disease virus (FMDV) outer capsid proteins 1B, 1C and 1D contribute to the virus serotype distribution and antigenic variants that exist within each of the seven serotypes. This study presents phylogenetic, genetic and antigenic analyses of South African Territories (SAT) serotypes prevalent in sub-Saharan Africa. Here, we show that the high levels of genetic diversity in the P1-coding region within the SAT serotypes are reflected in the antigenic properties of these viruses and therefore have implications for the selection of vaccine strains that would provide the best vaccine match against emerging viruses. Interestingly, although SAT1 and SAT2 viruses displayed similar genetic variation within each serotype (32 % variable amino acids), antigenic disparity, as measured by r(1)-values, was less pronounced for SAT1 viruses compared with SAT2 viruses within our dataset, emphasizing the high antigenic variation within the SAT2 serotype. Furthermore, we combined amino acid variation and the r(1)-values with crystallographic structural data and were able to predict areas on the surface of the FMD virion as antigenically relevant. These sites were mostly consistent with antigenic sites previously determined for types A, O and C using mAbs and escape mutant studies. Our methodology offers a quick alternative to determine antigenic relevant sites for FMDV field strains.
Journal of General Virology | 1997
Francois Frederick Maree; H. Huismans
The characteristic tubules that are produced during the orbivirus infection cycle are composed of a major viral nonstructural protein, NS1. To characterize the NS1 gene and gene product of African horsesickness virus (AHSV), a full-length cDNA copy of the NS1 gene of AHSV-6 was cloned and the nucleotide sequence determined. NS1 was highly conserved within the AHSV serogroup with between 95-98% conservation of amino acids among NS1 of AHSV-6, AHSV-4 and AHSV-9. The structure of AHSV NS1 tubules was investigated by in vitro translation of the AHSV-6 NS1 gene followed by expression of the gene in insect cells. The NS1 protein assembled in tubular structures with a diameter of approximately 23 nm and lengths of up to 4 microns. The absence of a ladder-like structure and lower sedimentation value of AHSV NS1 tubules clearly distinguished them from those of bluetongue virus.
PLOS ONE | 2013
Francois Frederick Maree; Belinda Blignaut; Tjaart A.P. de Beer; Elizabeth Rieder
Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.
Virus Research | 2011
Francois Frederick Maree; Belinda Blignaut; Lisa Aschenbrenner; T. G. Burrage; Elizabeth Rieder
The three SAT serotype viruses, endemic in Africa, are well known for their difficulty to adapt to cell culture. The viral mechanism involved in foot-and-mouth disease virus (FMDV) tissue tropism and cell-entry is not well understood. A recombinant, small plaque-forming virus (vSAT1tc), derived from a tissue culture-adapted SAT1 virus (SAR/9/81tc), revealed four amino acid substitutions (VP3 Asp192→Tyr; VP3 Ser217→Ile; VP1 Ala69→Gly and VP1 Asn110→Lys) in the capsid, compared to the SAR/9/81wt isolate collected from infected impala epithelium. One substitution added a positively charged lysine residue to the short βF-βG loop of VP1. Furthermore, vSAT1tc displayed a high affinity for CHO-K1 cells possibly via interaction with negatively charged sulphated polysaccharides while SAT1 impala strain relied strongly on α(V)β6 integrin receptors for cell entry. The cell culture adaptation and small plaque phenotype of vSAT1tc was accompanied by differences in particle aggregation and significant differences in acid stability. Based on limited cross neutralization data, the antigenic features seem to be unchanged. Thus, acquisition of positively charged residues in the virion may be beneficial for adaptation of SAT type field strains to cell culture.
Virus Research | 2011
Daria A. Rutkowska; Quinton Meyer; Francois Frederick Maree; Wilna Vosloo; Wilma Fick; H. Huismans
We have investigated the use of soluble chimeric trimers of the major capsid protein VP7 of African horse sickness virus (AHSV) as a vaccine delivery system by targeting some of the natural hydrophilic loops on the VP7 top domain for the insertion of foreign peptides. Key to this trimer display strategy is the solubility of AHSV VP7 and how the solubility of this hydrophobic protein can be manipulated by inserting peptides into the top domain. To investigate, we generated different cloning vectors by inserting multiple cloning sites at three different positions in the VP7 gene. These modifications inserted six amino acids at the cloning sites and in some cases this converted VP7 to a largely soluble protein without affecting the ability of the modified proteins to form trimers. The vectors were used to generate a number of soluble VP7 fusion proteins including a fusion with a 36 amino acid insert that overlaps important immunological domains on protein VP1 of foot and mouth disease virus (FMDV) as well as a 110 amino acid peptide derived from AHSV VP2. Soluble trimers of these fusion proteins were able to elicit a good insert-specific immune response in guinea pigs. l-Arginine was found to reverse protein aggregation and was employed as an effective strategy to isolate relatively pure soluble chimeric VP7 trimers. Another factor that increased VP7 solubility in both wild-type VP7 and one of the VP7 vector proteins was the substitution of the leucine residue in position 345 of the VP7 C-terminus with a hydrophilic arginine residue.
Journal of Virology | 2016
Francois Frederick Maree; Lin Mari De Klerk-Lorist; Simon Gubbins; Fuquan Zhang; Julian Seago; Eva Perez-Martin; Liz Reid; Katherine Anne Scott; Louis Van Schalkwyk; Roy G. Bengis; Bryan Charleston; Nicholas Juleff
ABSTRACT Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem.