Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François G. Gervais is active.

Publication


Featured researches published by François G. Gervais.


Cell | 1999

Involvement of Caspases in Proteolytic Cleavage of Alzheimer’s Amyloid-β Precursor Protein and Amyloidogenic Aβ Peptide Formation

François G. Gervais; Daigen Xu; George S. Robertson; John P. Vaillancourt; Yanxia Zhu; JingQi Huang; Andréa LeBlanc; David W Smith; Michael Rigby; Mark S. Shearman; Earl E. Clarke; Hui Zheng; Leonardus H. T. Van Der Ploeg; Salvatore C. Ruffolo; Nancy A. Thornberry; Steve Xanthoudakis; Robert Zamboni; Sophie Roy; Donald W. Nicholson

Abstract The amyloid-β precursor protein (APP) is directly and efficiently cleaved by caspases during apoptosis, resulting in elevated amyloid-β (Aβ) peptide formation. The predominant site of caspase-mediated proteolysis is within the cytoplasmic tail of APP, and cleavage at this site occurs in hippocampal neurons in vivo following acute excitotoxic or ischemic brain injury. Caspase-3 is the predominant caspase involved in APP cleavage, consistent with its marked elevation in dying neurons of Alzheimers disease brains and colocalization of its APP cleavage product with Aβ in senile plaques. Caspases thus appear to play a dual role in proteolytic processing of APP and the resulting propensity for Aβ peptide formation, as well as in the ultimate apoptotic death of neurons in Alzheimers disease.


British Journal of Pharmacology | 2002

Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2

Nicole Sawyer; Elizabeth Cauchon; Anne Chateauneuf; Rani P.G. Cruz; Donald W. Nicholson; Kathleen M. Metters; Gary P. O'Neill; François G. Gervais

The recombinant human prostaglandin D2 (PGD2) receptor, hCRTH2, has been expressed in HEK293(EBNA) and characterized with respect to radioligand binding and signal transduction properties. High and low affinity binding sites for PGD2 were identified in the CRTH2 receptor population by saturation analysis with respective equilibrium dissociation constants (KD) of 2.5 and 109 nM. This revealed that the affinity of PGD2 for CRTH2 is eight times less than its affinity for the DP receptor. Equilibrium competition binding assays revealed that of the compounds tested, only PGD2 and several related metabolites bound with high affinity to CRTH2 (Ki values ranging from 2.4 to 34.0 nM) with the following rank order of potency: PGD2>13,14‐dihydro‐15‐keto PGD2>15‐deoxy‐Δ12,14‐PGJ2>PGJ2>Δ12‐PGJ2>15(S)‐15 methyl‐PGD2. This is in sharp contrast with the rank order of potency obtained at DP : PGD2>PGJ2>Δ12‐PGJ2>15‐deoxy‐Δ12,14‐PGJ2 >>>13,14‐dihydro‐15‐keto‐PGD2. Functional studies demonstrated that PGD2 activation of recombinant CRTH2 results in decrease of intracellular cAMP in a pertussis toxin‐sensitive manner. Therefore, we showed that CRTH2 can functionally couple to the G‐protein Gαi/o. PGD2 and related metabolites were tested and their rank order of potency followed the results of the membrane binding assay. By Northern blot analysis, we showed that, besides haemopoietic cells, CRTH2 is expressed in many other tissues such as brain, heart, thymus, spleen and various tissues of the digestive system. In addition, in situ hybridization studies revealed that CRTH2 mRNA is expressed in human eosinophils. Finally, radioligand binding studies demonstrated that two eosinophilic cell lines, butyric acid‐differentiated HL‐60 and AML 14.3D10, also endogenously express CRTH2.


Prostaglandins & Other Lipid Mediators | 2004

Expression of prostaglandin D synthase and the prostaglandin D2 receptors DP and CRTH2 in human nasal mucosa

François Nantel; Carolyn Fong; Sonia Lamontagne; D. Hamish Wright; Adel Giaid; Martin Desrosiers; Kathleen M. Metters; Gary O’Neill; François G. Gervais

Abstract Background : Prostaglandin D 2 (PGD 2 ) is released from mast cells during the allergic response. Objective : Since PGD 2 has been shown to induce nasal congestion in humans, we investigated the distribution of hematopoietic prostaglandin D synthase (PGDS) and the two PGD 2 receptors, DP and CRTH2 in human nasal mucosa from healthy subjects and subjects suffering from polyposis, a severe form of chronic rhinosinusitis. Methods : DP mRNA expression was detected by in situ hybridization while PGDS, CRTH2 and various leukocyte markers expression were revealed by immunohistochemistry. Results : In the normal mucosa, PGDS was only detected in few resident mast cells while CRTH2 was undetectable. In contrast, DP receptor mRNA was detected in epithelial goblet cells, serous glands and in the vasculature. In the nasal mucosa of subjects suffering from polyposis: (1) PGDS was detected in mast cells and other large infiltrating inflammatory cells, (2) both DP mRNA and CRTH2 were detected in eosinophils and (3) CRTH2 was detected on a subset of infiltrating T cells. Although DP mRNA could not be detected in the T cells invading the nasal mucosa, it was found to be expressed in the T cells present in the lymph node and the thymus from normal individuals. Conclusion : This study indicates that cells capable of producing PGD 2 are present in the nasal mucosa and that both PGD 2 receptors, DP and CRTH2, might play a role in inflammatory disease of the upper airways.


Analytical Chemistry | 2009

High-sensitivity nanoLC-MS/MS analysis of urinary desmosine and isodesmosine.

Michel Boutin; Carl Berthelette; François G. Gervais; Mary Beth Scholand; John R. Hoidal; M. Leppert; Kevin P. Bateman; Pierre Thibault

Chronic obstructive pulmonary disease (COPD) is characterized by the degradation of elastin, the major insoluble protein of lung tissues. The degradation of elastin gives rise to desmosine (DES) and isodesmosine (IDES), two major urinary products typified by a hydrophilic pyridinium-based cross-linker structure. A high sensitivity method based on nanoflow liquid chromatography tandem mass spectrometry with multiple reaction monitoring was developed for the analysis of urinary DES and IDES. The analytes were derivatized with propionic anhydride and deuterated DES (D(4)-DES) was used as an internal standard. This method enables the quantification of DES and IDES in as little as 50 microL of urine and provides a detection limit of 0.10 ng/mL (0.95 fmol on-column). We report the analysis of DES and IDES in a cohort of 40 urine specimens from four groups of individuals: (a) COPD rapid decliners (11.8 +/- 3.7 ng/mg creatine (crea)), (b) COPD slow decliners (16.0 +/- 3.1 ng/mg crea), (c) healthy smokers (13.2 +/- 1.9 ng/mg crea), and (d) healthy nonsmokers (14.9 +/- 2.9 ng/mg crea). Our analysis reveals a statistically significant decrease in the level of urinary DES and IDES in COPD rapid decliner patients compared to healthy nonsmoker controls and COPD slow decliner patients. This methodology may be useful for monitoring DES and IDES levels in well controlled animal models for COPD or for longitudinal studies in COPD patients.


Molecular Pharmacology | 2011

Pharmacological characterization of MK-7246, a potent and selective CRTH2 (chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells) antagonist.

François G. Gervais; Nicole Sawyer; Rino Stocco; Martine Hamel; Connie M. Krawczyk; Susan Sillaots; Danielle Denis; Elizabeth Wong; Zhaoyin Wang; Michel Gallant; William M. Abraham; Deborah Slipetz; Michael A. Crackower; Gary P. O'Neill

The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor that has been reported to modulate inflammatory responses in various rodent models of asthma, allergic rhinitis and atopic dermatitis. In this study, we describe the biological and pharmacological properties of {(7R)-7-[[(4-fluorophenyl)sulfonyl](methyl)amino]-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl}acetic acid (MK-7246), a novel synthetic CRTH2 antagonist. We show that MK-7246 1) has high affinity for the human, monkey, dog, rat, and mouse CRTH2, 2) interacts with CRTH2 in a reversible manner, 3) exhibits high selectivity over all prostanoid receptors as well as 157 other receptors and enzymes, 4) acts as a full antagonist on recombinant and endogenously expressed CRTH2, 5) demonstrates good oral bioavailability and metabolic stability in various animal species, 6) yields ex vivo blockade of CRTH2 on eosinophils in monkeys and sheep, and 7) significantly blocks antigen-induced late-phase bronchoconstriction and airway hyper-responsiveness in sheep. MK-7246 represents a potent and selective tool to further investigate the in vivo function of CRTH2.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of MK-7246, a selective CRTH2 antagonist for the treatment of respiratory diseases

Michel Gallant; Christian Beaulieu; Carl Berthelette; John Colucci; Michael A. Crackower; Chad Dalton; Danielle Denis; Yves Ducharme; Richard W. Friesen; Daniel Guay; François G. Gervais; Martine Hamel; Robert Houle; Connie M. Krawczyk; Birgit Kosjek; Stephen Lau; Yves Leblanc; Ernest E. Lee; Jean-François Lévesque; Christophe Mellon; Carmela Molinaro; Wayne Mullet; Gary O’Neill; Paul D. O’Shea; Nicole Sawyer; Susan Sillaots; Daniel Simard; Deborah Slipetz; Rino Stocco; Dan Sørensen

In this manuscript we wish to report the discovery of MK-7246 (4), a potent and selective CRTH2 (DP2) antagonist. SAR studies leading to MK-7246 along with two synthetic sequences enabling the preparation of this novel class of CRTH2 antagonist are reported. Finally, the pharmacokinetic and metabolic profile of MK-7246 is disclosed.


Bioorganic & Medicinal Chemistry Letters | 2011

Azaindoles as potent CRTH2 receptor antagonists

Daniel Simard; Yves Leblanc; Carl Berthelette; M. Helmi Zaghdane; Carmela Molinaro; Zhaoyin Wang; Michel Gallant; Stephen Lau; Trinh Thao; Martine Hamel; Rino Stocco; Nicole Sawyer; Susan Sillaots; François G. Gervais; Robert Houle; Jean-François Lévesque

A new class of 7-azaindole analogs of MK-7246 as potent and selective CRTH2 antagonists is reported. The SAR leading to the identification of the optimal azaindole regioisomer as well as the pharmacokinetics and off-target activities of the most potent antagonists are disclosed.


Apoptosis | 2006

Caspase-3 cleaves the formin-homology-domain-containing protein FHOD1 during apoptosis to generate a C-terminal fragment that is targeted to the nucleolus

Isabelle Ménard; François G. Gervais; Donald W. Nicholson; Sophie Roy

The formin homology (FH) proteins play a crucial role in cytoskeleton remodelling during many essential processes. In this study, we demonstrate for the first time that the formin-homology-domain-containing protein FHOD1 is cleaved by caspase-3 at the SVPD616 site during apoptosis. Using confocal microscopy, we further demonstrate that while full length FHOD1 is mostly cytoplasmic, the FHOD1 N-terminal cleavage product is diffusely localized throughout the cytoplasm and the nucleoplasm, whereas the C-terminal cleavage product is almost exclusively nuclear with some nucleolar localization. Finally, using a run-on transcription assay we show that the C-terminal FHOD1 cleavage product has the ability to inhibit RNA polymerase I transcription when overexpressed in HeLa cells as shown by blockage of BrUTP incorporation.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2011

Identification of distinct plasma biomarker signatures in patients with rapid and slow declining forms of COPD.

Viswanath Devanarayan; Mary Beth Scholand; John R. Hoidal; M. Leppert; Michael A. Crackower; Gary P. O'Neill; François G. Gervais

ABSTRACT Chronic obstructive pulmonary disease (COPD) is a prevalent pulmonary disease characterized by a progressive decline in lung function. The identification of biomarkers capable of predicting the rate of lung function decline or capable of giving an early read on drug efficacy in clinical trials would be very useful. The aim of this study was to identify plasma biomarkers capable of accurately distinguishing patients with COPD from healthy controls. Eighty-nine plasma markers in 40 COPD patients and 20 healthy smoker controls were analyzed. The COPD patients were divided into two subgroups, rapid and slow decliners based on their rate of lung function decline measured over 15 years. Univariate analysis revealed that 25 plasma markers were statistically different between rapid decliners and controls, 4 markers were different between slow decliners and controls, and 10 markers were different between rapid and slow decliners (p < 0.05). Multivariate analysis led to the identification of groups of plasma markers capable of distinguishing rapid decliners from controls (signature 1), slow decliners from controls (signature 2) and rapid from slow decliners (signature 3) with over 90%% classification accuracy. Importantly, signature 1 was shown to be longitudinally stable using plasma samples taken a year later from a subset of patients. This study describes a novel set of plasma markers differentiating slow from rapid decline of lung function in COPD. If validated in distinct and larger cohorts, the signatures identified will have important implications in both disease diagnosis, as well as the clinical evaluation of new therapies.


Bioorganic & Medicinal Chemistry Letters | 2011

New indole amide derivatives as potent CRTH2 receptor antagonists.

Helmi Zaghdane; Michael Boyd; John Colucci; Daniel Simard; Carl Berthelette; Yves Leblanc; Zhaoyin Wang; Robert Houle; Jean François Lévesque; Carmela Molinaro; Martine Hamel; Rino Stocco; Nicole Sawyer; Susan Sillaots; François G. Gervais; Michel Gallant

A new series of indole amide acting as hCRTH2 receptor ligands had been explored and are described herein. Several amide derivatives displaying low nanomolar activity in hCRTH2 binding and whole blood assays were identified. They were found to behave as a full antagonists, exhibiting good selectivity over related prostaglandin receptors. Also, prototypical compounds in this novel series which displayed acceptable CYP profiles and were orally bioavailable in rats were identified.

Collaboration


Dive into the François G. Gervais's collaboration.

Researchain Logo
Decentralizing Knowledge