François Gallet
Paris Diderot University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Gallet.
Biophysical Journal | 1999
Sylvie Hénon; Guillaume Lenormand; Alain Richert; François Gallet
Optical tweezers are used to apply calibrated forces to human erythrocytes, via small silica beads bound to their membrane. The shear modulus mu of the membrane is inferred from measurements of the cell deformation in the small strain linear regime. We find the same result mu = 2.5 +/- 0.4 microN/m for both discotic and nearly spherical swollen cells. This value is smaller than the one deduced from micropipettes experiments. However the two methods do not operate in the same deformation regime and are not expected to lead to the same result.
Physical Review E | 2006
Martial Balland; Nicolas Desprat; Delphine Icard; Sophie Féréol; Atef Asnacios; Julien Browaeys; Sylvie Hénon; François Gallet
We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single cells. In the first one, the creep function J(t) of a cell stretched between two glass plates is measured after applying a constant force step. In the second one, a microbead specifically bound to transmembrane receptors is driven by an oscillating optical trap, and the viscoelastic coefficient Ge(omega) is retrieved. Both J(t) and Ge(omega) exhibit power law behaviors: J(t) = A0(t/t0)alpha and absolute value (Ge(omega)) = G0(omega/omega0)alpha, with the same exponent alpha approximately 0.2. This power law behavior is very robust; alpha is distributed over a narrow range, and shows almost no dependence on the cell type, on the nature of the protein complex which transmits the mechanical stress, nor on the typical length scale of the experiment. On the contrary, the prefactors A0 and G0 appear very sensitive to these parameters. Whereas the exponents alpha are normally distributed over the cell population, the prefactors A0 and G0 follow a log-normal repartition. These results are compared with other data published in the literature. We propose a global interpretation, based on a semiphenomenological model, which involves a broad distribution of relaxation times in the system. The model predicts the power law behavior and the statistical repartition of the mechanical parameters, as experimentally observed for the cells. Moreover, it leads to an estimate of the largest response time in the cytoskeletal network: tau(m) approximately 1000 s.
Biophysical Journal | 2001
Guillaume Lenormand; Sylvie Hénon; Alain Richert; Jacqueline Simeon; François Gallet
The area expansion and the shear moduli of the free spectrin skeleton, freshly extracted from the membrane of a human red blood cell (RBC), are measured by using optical tweezers micromanipulation. An RBC is trapped by three silica beads bound to its membrane. After extraction, the skeleton is deformed by applying calibrated forces to the beads. The area expansion modulus K(C) and shear modulus mu(C) of the two-dimensional spectrin network are inferred from the deformations measured as functions of the applied stress. In low hypotonic buffer (25 mOsm/kg), one finds K(C) = 4.8 +/- 2.7 microN/m, mu(C) = 2.4 +/- 0.7 microN/m, and K(C)/mu(C) = 1.9 +/- 1.0. In isotonic buffer, one measures higher values for K(C), mu(C), and K(C)/mu(C), partly because the skeleton collapses in a high-ionic-strength environment. Some data concerning the time evolution of the mechanical properties of the skeleton after extraction and the influence of ATP are also reported. In the Discussion, it is shown that the measured values are consistent with estimates deduced from experiments carried out on the intact membrane and agree with theoretical and numerical predictions concerning two-dimensional networks of entropic springs.
Physical Review Letters | 2004
Bérengère Abou; François Gallet
We present a direct experimental measurement of an effective temperature in a colloidal glass of laponite, using a micrometric bead as a thermometer. The nonequilibrium fluctuation-dissipation relation, in the particular form of a modified Einstein relation, is investigated with diffusion and mobility measurements of the bead embedded in the glass. We observe an unusual nonmonotonic behavior of the effective temperature: starting from the bath temperature, it is found to increase up to a maximum value, and then decrease back, as the system ages. We show that the observed deviation from the Einstein relation is related to the relaxation times previously measured in dynamic light scattering experiments.
PLOS ONE | 2010
Damien Robert; Thi-Hanh Nguyen; François Gallet; Claire Wilhelm
Background Regulation of intracellular trafficking is a central issue in cell biology. The forces acting on intracellular vesicles (endosomes) can be assessed in living cells by using a combination of active and passive microrheology. Methodology/Principal Findings This dual approach is based on endosome labeling with magnetic nanoparticles. The resulting magnetic endosomes act both as probes that can be manipulated with external magnetic fields to infer the viscoelastic modulus of their surrounding microenvironment, and as biological vehicles that are trafficked along the microtubule network by means of forces generated by molecular motors. The intracellular viscoelastic modulus exhibits power law dependence with frequency, which is microtubule and actin-dependent. The mean square displacements of endosomes do not follow the predictions of the fluctuation-dissipation theorem, which offers evidence for active force generation. Microtubule disruption brings the intracellular medium closer to thermal equilibrium: active forces acting on the endosomes depend on microtubule-associated motors. The power spectra of these active forces, deduced through the use of a generalized Langevin equation, show a power law decrease with frequency and reveal an actin-dependent persistence of the force with time. Experimental spectra have been reproduced by a simple model consisting in a series of force steps power-law distributed in time. This model enlightens the role of the cytoskeleton dependent force exerted on endosomes to perform intracellular trafficking. Conclusions/Significance In this work, the influence of cytoskeleton components and molecular motors on intracellular viscoelasticity and transport is addressed. The use of an original probe, the magnetic endosome, allows retrieving the power spectrum of active forces on these organelles thanks to interrelated active and passive measures. Finally a computational model gives estimates of the force itself and hence of the number of the motors pulling on endosomes.
Biophysical Journal | 2009
Myriam Allioux-Guérin; Delphine Icard-Arcizet; Christiane Durieux; Sylvie Hénon; François Gallet; Jean-Claude Mevel; Marie-Jo Masse; Marc Tramier; Maïté Coppey-Moisan
We investigate the dynamic response of single cells to weak and local rigidities, applied at controlled adhesion sites. Using multiple latex beads functionalized with fibronectin, and each trapped in its own optical trap, we study the reaction in real time of single 3T3 fibroblast cells to asymmetrical tensions in the tens of pN x microm(-1) range. We show that the cell feels a rigidity gradient even at this low range of tension, and over time develops an adapted change in the force exerted on each adhesion site. The rate at which force increases is proportional to trap stiffness. Actomyosin recruitment is regulated in space and time along the rigidity gradient, resulting in a linear relationship between the amount of recruited actin and the force developed independently in trap stiffness. This time-regulated actomyosin behavior sustains a constant and rigidity-independent velocity of beads inside the traps. Our results show that the strengthening of extracellular matrix-cytoskeleton linkages along a rigidity gradient is regulated by controlling adhesion area and actomyosin recruitment, to maintain a constant deformation of the extracellular matrix.
EPL | 1989
E. Rolley; S. Balibar; François Gallet; F. Graner; C. Guthmann
We have measured the surface tension γ of b.c.c. solid helium-3 from the visual observation of large single crystals, in equilibrium with their liquid phase, between 0.1 and 0.4 K. This first direct measurement gives a much larger result (γ = (0.060 ± 0.011) erg/cm2) than previously estimated from the maximum temperature at which facets were observed on growing crystals (0.10 K). We propose that quantum fluctuations reduce the step energy and broaden the roughening transition, so that dynamic roughening may occur far below the static roughening temperature.
EPL | 1986
François Gallet; P. Nozières; S. Balibar; E. Rolley
By using an interferometric technique, we carefully studied the growth of hcp 4He crystals near the roughening transition of their (0001) surfaces, at TR = 1.28 K. We discovered an intermediate regime for the growth, at T TR, between an exponential behaviour due to the 2D nucleation of terraces in the smooth state (T TR). This intermediate regime takes place slightly below TR. Its temperature width increases with the applied driving force. All our experimental results are consistent with a new calculation based on the critical theory of roughening, which predicts a completely continuous or infinite-order transition. Precise values are deduced for the roughening temperature TR((1.28 ± 0.01) K) and the relative amplitude of the lattice potential (tc = 0.65 ± 0.15).
Scientific Reports | 2016
Kelly Aubertin; Amanda K. A. Silva; Nathalie Luciani; Ana Espinosa; Aurélie Djemat; Dominique Charue; François Gallet; Olivier Blanc-Brude; Claire Wilhelm
Photodynamic therapy is an emerging cancer treatment that is particularly adapted for localized malignant tumor. The phototherapeutic agent is generally injected in the bloodstream and circulates in the whole organism as a chemotherapeutic agent, but needs light triggering to induce localized therapeutic effects. We found that one of the responses of in vitro and in vivo cancer cells to photodynamic therapy was a massive production and emission of extracellular vesicles (EVs): only 1 hour after the photo-activation, thousands of vesicles per cell were emitted in the extracellular medium. A similar effect has been found after treatment with Doxorubicin (chemotherapy), but far less EVs were produced, even 24 hours after the treatment. Furthermore, we found that the released EVs could transfer extracellular membrane components, drugs and even large intracellular objects to naive target cells. In vivo, photodynamic treatment and chemotherapy increased the levels of circulating EVs several fold, confirming the vast induction of cancer cell vesiculation triggered by anti-cancer therapies.
Biophysical Journal | 2011
Alia Al-Kilani; Olivier de Freitas; Sylvie Dufour; François Gallet
The coupling between cell-cell and cell-matrix adhesion systems is known to affect the stability of the adhesive status of cells, as well as tissue cohesion. In this work, we perform quantitative assays of integrin-cadherin cross talk in controlled and reproducible conditions. This is achieved by plating cells on microprinted fibronectin patterns of different sizes, and simulating the formation of an intercellular contact with a microbead coated with E-cadherin extracellular domains and brought to the cell membrane. Using an optical trap, we measure the average rigidity modulus of the E-cadherin bead-cell contact as a function of the contact incubation time and of the cell spreading area. For a given incubation time, this rigidity modulus decreases by three orders of magnitude as the cell-matrix contact area, A, increases from 100 to 700 μm(2). In a similar way, the dynamics of formation of the bead-cell contact gets slower as this area increases. This is clear evidence for a strong negative feedback from cell-fibronectin onto cell-cell adhesive contacts, for which we discuss some possible mechanisms.