François Gevaert
university of lille
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Gevaert.
PLOS ONE | 2013
Virginie Raybaud; Grégory Beaugrand; Eric Goberville; Gaspard Delebecq; Christophe Destombe; Myriam Valero; Dominique Davoult; Pascal Morin; François Gevaert
Kelp ecosystems form widespread underwater forests playing a major role in structuring the biodiversity at a regional scale. Some seaweeds such as Laminaria digitata are also economically important, being exploited for their alginate and iodine content. Although some studies have shown that kelp ecosystems are regressing and that multiple causes are likely to be at the origin of the disappearance of certain populations, the extent to which global climate change may play a role remains speculative. Here we show that many populations of L. digitata along European coasts are on the verge of local extinction due to a climate-caused increase in sea temperature. By modeling the spatial distribution of the seaweed, we evaluate the possible implications of global climate change for the geographical patterns of the species using temperature data from the Coupled Model Intercomparison Project phase 5 (CMIP5). Projections of the future range of L. digitata throughout the 21st century show large shifts in the suitable habitat of the kelp and a northward retreat of the southern limit of its current geographic distribution from France to Danish coasts and the southern regions of the United Kingdom. However, these projections depend on the intensity of warming. A medium to high warming is expected to lead to the extirpation of the species as early as the first half of the 21st century and there is high confidence that regional extinction will spread northwards by the end of this century. These changes are likely to cause the decline of species whose life cycle is closely dependent upon L. digitata and lead to the establishment of new ecosystems with lower ecological and economic values.
Journal of the Marine Biological Association of the United Kingdom | 2001
François Gevaert; Dominique Davoult; Anne Créach; R. Kling; Marie-Andrée Janquin; L. Seuront; Yves Lemoine
Fresh weight (FW), dry weight (DW), carbon and nitrogen content were measured for specimens of Laminaria saccharina (Heterokontophyta: Phaeophyceae) sampled in the eastern English Channel in order to conduct a biometrical study. The aim was to relate carbon and nitrogen masses of the algae to a simple and rapid morphological measurement of the total length of the sporophyte. These relationships were highly significant and appeared very useful to express the standing biomass of L. saccharina in terms of carbon or nitrogen and then to consider dynamic processes such as primary production. Variations in tissue carbon (C) and nitrogen (N) were examined over a complete seasonal cycle. Average carbon and nitrogen content ranged from 23·9 to 31·4% and 2·23 to 3·42% of the total dry weight, respectively. Variations in C/N ratio showed a clear seasonal pattern with an increase in the early spring corresponding to strong photosynthesis and growth.
The Journal of Experimental Biology | 2013
Eric Beraud; François Gevaert; Cécile Rottier; Christine Ferrier-Pagès
SUMMARY The physiological response of the scleractinian coral Turbinaria reniformis to ammonium enrichment (3 μmol l−1) was examined at 26°C as well as during a 7 day increase in temperature to 31°C (thermal stress). At 26°C, ammonium supplementation had little effect on the coral physiology. It induced a decrease in symbiont density, compensated by an increase in chlorophyll content per symbiont cell. Organic carbon release was reduced, likely because of a better utilization of the photosynthesized carbon (i.e. incorporation into proteins, kept in the coral tissue). The δ15N signatures of the ammonium-enriched symbionts and host tissue were also significantly decreased, by 4 and 2‰, respectively, compared with the non-enriched conditions, suggesting a significant uptake of inorganic nitrogen by the holobiont. Under thermal stress, coral colonies that were not nitrogen enriched experienced a drastic decrease in photosynthetic and photoprotective pigments (chlorophyll a, β-carotene, diadinoxanthin, diatoxanthin and peridinin), followed by a decrease in the rates of photosynthesis and calcification. Organic carbon release was not affected by this thermal stress. Conversely, nitrogen-enriched corals showed an increase in their pigment concentrations, and maintained rates of photosynthesis and calcification at ca. 60% and 100% of those measured under control conditions, respectively. However, these corals lost more organic carbon into the environment. Overall, these results indicate that inorganic nitrogen availability can be important to determining the resilience of some scleractinian coral species to thermal stress, and can have a function equivalent to that of heterotrophic feeding concerning the maintenance of coral metabolism under stress conditions.
Marine Pollution Bulletin | 2009
Nicolas Spilmont; Lionel Denis; Luis Felipe Artigas; Frédéric Caloin; Lucie Courcot; Anne Créach; Nicolas Desroy; François Gevaert; Pascal Hacquebart; Cédric Hubas; Marie-Andrée Janquin; Yves Lemoine; Christophe Luczak; Aline Migné; Mathieu Rauch; Dominique Davoult
From 1999 to 2005, studies carried out in the frame of regional and national French programs aimed to determine whether the Phaeocystis globosa bloom affected the intertidal benthic communities of the French coast of the eastern English Channel in terms of composition and/or functioning. Study sites were chosen to cover most of the typical shore types encountered on this coast (a rocky shore, an exposed sandy beach and a small estuary). Both the presence of active Phaeocystis cells and their degradation product (foam) did have a significant impact on the studied shores. The primary production and growth rates of the kelp Saccharina latissima decreased during the bloom because of a shortage of light and nutrient for the macroalgae. On sandy sediments, the benthic metabolism (community respiration and community primary production), as well as the nitrification rate, were enhanced during foam deposits, in relation with the presence of bacteria and active pelagic cells within the decaying colonies. In estuarine sediments, the most impressive impact was the formation of a crust at the sediment surface due to drying foam. This led to anoxic conditions in the surface sediment and resulted in a high mortality among the benthic community. Some organisms also tended to migrate upward and were then directly accessible to the higher trophic level represented by birds. Phaeocystis then created a shortcut in the estuarine trophic network. Most of these modifications lasted shortly and all the systems considered came back to their regular properties and activities a few weeks after the end of the bloom, except for the most impacted estuarine area.
Biodiversity and Conservation | 2016
Rita Araújo; Jorge Assis; R. Aguillar; Laura Airoldi; Ignacio Bárbara; Inka Bartsch; Trine Bekkby; Hartvig Christie; Dominique Davoult; S. Derrien-Courtel; C. Fernandez; Stein Fredriksen; François Gevaert; Hege Gundersen; A. Le Gal; L. Léveque; Kjell Magnus Norderhaug; Paulo J. Oliveira; Araceli Puente; J. M. Rico; Eli Rinde; Hendrik Schubert; Elisabeth M. A. Strain; Myriam Valero; F. Viard; Isabel Sousa-Pinto
A comprehensive expert consultation was conducted in order to assess the status, trends and the most important drivers of change in the abundance and geographical distribution of kelp forests in European waters. This consultation included an on-line questionnaire, results from a workshop and data provided by a selected group of experts working on kelp forest mapping and eco-evolutionary research. Differences in status and trends according to geographical areas, species identity and small-scale variations within the same habitat where shown by assembling and mapping kelp distribution and trend data. Significant data gaps for some geographical regions, like the Mediterranean and the southern Iberian Peninsula, were also identified. The data used for this study confirmed a general trend with decreasing abundance of some native kelp species at their southern distributional range limits and increasing abundance in other parts of their distribution (Saccharina latissima and Saccorhiza polyschides). The expansion of the introduced species Undaria pinnatifida was also registered. Drivers of observed changes in kelp forests distribution and abundance were assessed using experts’ opinions. Multiple possible drivers were identified, including global warming, sea urchin grazing, harvesting, pollution and fishing pressure, and their impact varied between geographical areas. Overall, the results highlight major threats for these ecosystems but also opportunities for conservation. Major requirements to ensure adequate protection of coastal kelp ecosystems along European coastlines are discussed, based on the local to regional gaps detected in the study.
Journal of Phycology | 2007
Aline Migné; François Gevaert; Anne Créach; Nicolas Spilmont; Emilie Chevalier; Dominique Davoult
Photosynthetic microphytobenthic activity has increasingly been examined using pulse‐amplitude‐modulated (PAM) fluorescence techniques. Nevertheless, estimating carbon production rates from fluorescence measurements implies the establishment of reliable relationships. The aim of this study was to determine such a relationship from field measurements of both PAM fluorescence and CO2 fluxes. Three study sites of varying sedimentary features were investigated in different seasons. Both linear and with plateau relationships were obtained between the fluorescence parameter (relative electron transport rate [rETR]) and the community‐level carbon‐fixation rate (gross community primary production rate [GCP] in mg C · m−2 · h−1). The correlation calculated from the whole data set (i.e., all sites and all seasons) was very strong (n = 106; r = 0.928). Significant correlations were also obtained for light‐curve parameters assessed with the two methods: Pm (n = 8; r = 0.920) and Ik (n = 8; r = 0.818). Total community‐level carbon fixation for the emersion period was calculated from fluorescence measurements according to the relationship established between GCP and rETR, and between light‐curve parameters, and the results were compared to the estimation obtained directly from GCP measurements. The agreement between the two estimations was quite good for both ways of calculation (with a mean discrepancy of 30% for the first one and −2% for the second one). These results suggest the potential application of PAM measurements to calculate carbon‐fixation rates at large spatial and temporal scales, provided that a set of experiments coupled with CO2‐flux measurements are performed.
Photosynthesis Research | 2015
Christine Ferrier-Pagès; Stéphanie Reynaud; Eric Beraud; Cécile Rottier; Dominique Menu; Gwendoline Duong; François Gevaert
Gorgonians are one of the most important benthic components of tropical and temperate areas, and play a fundamental role as ecosystem engineers. Although global warming and pollution increasingly threaten them, the acquisition of nutrients, which is a key process in fitness and stress resistance, has been poorly investigated in such species. This study has thus used an advanced in situ incubation chamber for the first time with gorgonians, to assess the daily acquisition of nutrients and the photophysiology of the Mediterranean symbiotic species, Eunicella singularis. The xanthophyll cycle was assessed in parallel. This work has revealed that E. singularis presents a different functioning than the Mediterranean symbiotic corals. This gorgonian indeed relies on both autotrophy and heterotrophy in summer to optimize its energetic budget, while corals mainly shift to autotrophy for their respiratory needs and tissue growth. In addition, although E. singularis lives in the same depths/locations, and harbours the same symbiont genotype than the corals, the photosynthetic performances of their respective symbionts are significantly different. Indeed, E. singularis acquired 2–3 times less autotrophic carbon from its symbionts than corals, but maintained a positive carbon budget by reducing respiration rates, and by presenting maximal photosynthetic rates throughout the day, suggesting a very efficient light utilization. Almost no photoinhibition was observed under very high light levels, because of the induction of a xanthophyll photoprotection process. These results help understanding why gorgonians often dominate many benthic ecosystems.
European Journal of Phycology | 2016
Gaspard Delebecq; Dominique Davoult; Marie-Andrée Janquin; Luz Valeria Oppliger; Dominique Menu; Jean-Claude Dauvin; François Gevaert
ABSTRACT Given the growing body of evidence on the general decline of kelp beds worldwide, it is crucial to understand the physiological responses of kelp gametophyte stages to environmental parameters. We investigated the physiological responses to light and temperature of gametophytes from two populations of Laminaria digitata in contrasting environments along the French coast of the English Channel. Gametophytes of both populations were highly tolerant of high light through an efficient down-regulation of photosynthesis triggered by the activation of the xanthophyll cycle. Temperature increases promoted photosynthesis and photosystem II showed high resistance to short-term exposure to high temperatures currently encountered in the field. Gametophytes from the two sites displayed some differences in their pigment content and photosynthetic characteristics, but low replication and difference in time of sampling precluded tests of potential local adaptation to the light conditions at each site, as observed in previously published results on adult sporophytes. Gametophytes of L. digitata appeared to be resistant to irradiation and temperature conditions currently experienced in the field, confirming their role in persistence of kelp species under stressful environmental conditions.
Ecological Indicators | 2013
I. Rombouts; Grégory Beaugrand; Luis Felipe Artigas; Jean-Claude Dauvin; François Gevaert; E. Goberville; D. Kopp; Sébastien Lefebvre; Christophe Luczak; Nicolas Spilmont; Morgane Travers-Trolet; M.C. Villanueva; R.R. Kirby
Marine Ecology Progress Series | 2003
François Gevaert; Anne Créach; Dominique Davoult; Aline Migné; Guy Levavasseur; Pierre Arzel; Anne-Catherine Holl; Yves Lemoine