Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Hoh is active.

Publication


Featured researches published by François Hoh.


Structure | 1997

The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling

Stefan Arold; Peet Franken; Marie Paule Strub; François Hoh; Serge Benichou; Richard Benarous; Christian Dumas

BACKGROUND Human immunodeficiency virus (HIV) Nef protein accelerates virulent progression of acquired immunodeficiency syndrome (AIDS) by its interaction with specific cellular proteins involved in signal transduction and host cell activation. Nef has been shown to bind specifically to a subset of the Src family of kinases. The structures of free Nef and Nef bound to Src homology region 3 (SH3) domain are important for the elucidation of how the affinity and specificity for the Src kinase family SH3 domains are achieved, and also for the development of potential drugs and vaccines against AIDS. RESULTS We have determined the crystal structures of the conserved core of HIV-1 Nef protein alone and in complex with the wild-type SH3 domain of the p59fyn protein tyrosine kinase (Fyn), at 3.0 A resolution. Comparison of the bound and unbound Nef structures revealed that a proline-rich motif (Pro-x-x-Pro), which is implicated in SH3 binding, is partially disordered in the absence of the binding partner; this motif only fully adopts a left-handed polyproline type II helix conformation upon complex formation with the Fyn SH3 domain. In addition, the structures show how an arginine residue (Arg77) of Nef interacts with Asp 100 of the so-called RT loop within the Fyn SH3 domain, and triggers a hydrogen-bond rearrangement which allows the loop to adapt to complement the Nef surface. The Arg96 residue of the Fyn SH3 domain is specifically accommodated in the same hydrophobic pocket of Nef as the isoleucine residue of a previously described Fyn SH3 (Arg96-->lle) mutant that binds to Nef with higher affinity than the wild type. CONCLUSIONS The three-dimensional structures support evidence that the Nef-Fyn complex forms in vivo and may have a crucial role in the T cell perturbating action of Nef by altering T cell receptor signaling. The structures of bound and unbound Nef reveal that the multivalency of SH3 binding may be achieved by a ligand induced flexibility in the RT loop. The structures suggest possible targets for the design of inhibitors which specifically block Nef-SH3 interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria.

Nathalie Declerck; Laurent Bouillaut; Denis Chaix; Nathalie Rugani; Leyla Slamti; François Hoh; Didier Lereclus; Stefan T. Arold

Gram-positive bacteria use a wealth of extracellular signaling peptides, so-called autoinducers, to regulate gene expression according to population densities. These “quorum sensing” systems control vital processes such as virulence, sporulation, and gene transfer. Using x-ray analysis, we determined the structure of PlcR, the major virulence regulator of the Bacillus cereus group, and obtained mechanistic insights into the effects of autoinducer binding. Our structural and phylogenetic analysis further suggests that all of those quorum sensors that bind directly to their autoinducer peptide derive from a common ancestor and form a single family (the RNPP family, for Rap/NprR/PlcR/PrgX) with conserved features. As a consequence, fundamentally different processes in different bacterial genera appear regulated by essentially the same autoinducer recognition mechanism. Our results shed light on virulence control by PlcR and elucidate origin and evolution of multicellular behavior in bacteria.


Molecular and Cellular Biology | 2002

Identification of Akt Association and Oligomerization Domains of the Akt Kinase Coactivator TCL1

Gerald Künstle; Jarmo Laine; Gaëlle Pierron; Shin-ichiro Kagami; Hiroshi Nakajima; François Hoh; Christian Roumestand; Marc-Henri Stern; Masayuki Noguchi

ABSTRACT Serine/threonine kinase Akt/protein kinase B, the cellular homologue of the transforming viral oncogene v-Akt, plays a central role in the regulation of cell survival and proliferation. We have previously demonstrated that the proto-oncogene TCL1 is an Akt kinase coactivator. TCL1 binds to Akt and mediates the formation of oligomeric TCL1-Akt high-molecular-weight protein complexes in vivo. Within these protein complexes, Akt is preferentially phosphorylated and activated. The MTCP1/TCL1/TCL1b oncogene activation is the hallmark of human T-cell prolymphocytic leukemia (T-PLL), a form of adult leukemia. In the present study, using a PCR-generated random TCL1 library combined with a yeast two-hybrid screening detecting loss of interaction, we identified D16 and I74 as amino acid residues mediating the association of TCL1 with Akt. Based on molecular modeling, we determined that the βC-sheet of TCL1 is essential for TCL1 homodimerization. Studies with mammalian overexpression systems demonstrated that both Akt association and oligomerization domains of TCL1 are distinct functional domains. In vitro kinase assays and overexpression experiments in mammalian cells demonstrated that both TCL1-Akt interaction and oligomerization of TCL1 were required for TCL1-induced Akt activation and substrate phosphorylation. Assays for mitochondrial permeability transition, nuclear translocation, and cell recovery demonstrated that both Akt association and homodimerization of TCL1 are similarly needed for the full function of TCL1 as an Akt kinase coactivator in vivo. The results demonstrate the structural basis of TCL1-induced activation of Akt, which causes human T-PLL.


Journal of Molecular Biology | 2002

Crystal Structure of Maba from Mycobacterium Tuberculosis, a Reductase Involved in Long-Chain Fatty Acid Biosynthesis.

Martin Cohen-Gonsaud; Stéphanie Ducasse; François Hoh; Didier Zerbib; Gilles Labesse; Annaı̈k Quémard

The fatty acid elongation system FAS-II is involved in the biosynthesis of mycolic acids, which are major and specific long-chain fatty acids of the cell envelope of Mycobacterium tuberculosis and other mycobacteria, including Mycobacterium smegmatis. The protein MabA, also named FabG1, has been shown recently to be part of FAS-II and to catalyse the NADPH-specific reduction of long chain beta-ketoacyl derivatives. This activity corresponds to the second step of an FAS-II elongation round. FAS-II is inhibited by the antituberculous drug isoniazid through the inhibition of the 2-trans-enoyl-acyl carrier protein reductase InhA. Thus, the other enzymes making up this enzymatic complex represent potential targets for designing new antituberculous drugs. The crystal structure of the apo-form MabA was solved to 2.03 A resolution by molecular replacement. MabA is tetrameric and shares the conserved fold of the short-chain dehydrogenases/reductases (SDRs). However, it exhibits some significant local rearrangements of the active-site loops in the absence of a cofactor, particularly the beta5-alpha5 region carrying the unique tryptophan residue, in agreement with previous fluorescence spectroscopy data. A similar conformation has been observed in the beta-ketoacyl reductase from Escherichia coli and the distantly related dehydratase. The distinctive enzymatic and structural properties of MabA are discussed in view of its crystal structure and that of related enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1

Aude Echalier; Yunbao Pan; Melissa Birol; Nicolas Tavernier; Lionel Pintard; François Hoh; Christine Ebel; Nathalie Galophe; François X. Claret; Christian Dumas

The COP9 (Constitutive photomorphogenesis 9) signalosome (CSN), a large multiprotein complex that resembles the 19S lid of the 26S proteasome, plays a central role in the regulation of the E3-cullin RING ubiquitin ligases (CRLs). The catalytic activity of the CSN complex, carried by subunit 5 (CSN5/Jab1), resides in the deneddylation of the CRLs that is the hydrolysis of the cullin-neural precursor cell expressed developmentally downregulated gene 8 (Nedd8)isopeptide bond. Whereas CSN-dependent CSN5 displays isopeptidase activity, it is intrinsically inactive in other physiologically relevant forms. Here we analyze the crystal structure of CSN5 in its catalytically inactive form to illuminate the molecular basis for its activation state. We show that CSN5 presents a catalytic domain that brings essential elements to understand its activity control. Although the CSN5 active site is catalytically competent and compatible with di-isopeptide binding, the Ins-1 segment obstructs access to its substrate-binding site, and structural rearrangements are necessary for the Nedd8-binding pocket formation. Detailed study of CSN5 by molecular dynamics unveils signs of flexibility and plasticity of the Ins-1 segment. These analyses led to the identification of a molecular trigger implicated in the active/inactive switch that is sufficient to impose on CSN5 an active isopeptidase state. We show that a single mutation in the Ins-1 segment restores biologically relevant deneddylase activity. This study presents detailed insights into CSN5 regulation. Additionally, a dynamic monomer-dimer equilibrium exists both in vitro and in vivo and may be functionally relevant.


Structure | 2002

Structure of the cathelicidin motif of protegrin-3 precursor: structural insights into the activation mechanism of an antimicrobial protein.

Jean-Frédéric Sanchez; François Hoh; Marie-Paule Strub; André Aumelas; Christian Dumas

Cathelicidins are a family of antimicrobial proteins isolated from leucocytes and epithelia cells that contribute to the innate host defense mechanisms in mammalians. Located in the C-terminal part of the holoprotein, the cathelicidin-derived antimicrobial peptide is liberated by a specific protease cleavage. Here, we report the X-ray structure of the cathelicidin motif of protegrin-3 solved by MAD phasing using the selenocysteine-labeled protein. Its overall structure represents a fold homologous to the cystatin family and adopts two native states, a monomer, and a domain-swapped dimer. This crystal structure is the first example of a structural characterization of the highly conserved cathelicidin motif and thus provides insights into the possible mechanism of activation of the antimicrobial protegrin peptide.


Acta Crystallographica Section D-biological Crystallography | 2005

Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding.

François Hoh; Jean-Luc Pons; Marie-Françoise Gautier; F. de Lamotte; Christian Dumas

In plants, a family of ubiquitous proteins named non-specific lipid-transfer proteins (ns-LTPs) facilitates the transfer of fatty acids, phospholipids and steroids between membranes. Recent data suggest that these secreted proteins play a key role in the formation of cuticular wax layers and in defence mechanisms against pathogens. In this study, X-ray crystallography has been used to examine the structural details of the interaction between a wheat type 2 ns-LTP and a lipid, L-alpha-palmitoyl-phosphatidyl glycerol. This crystal structure was solved ab initio at 1.12 A resolution by direct methods. The typical alpha-helical bundle fold of this protein is maintained by four disulfide bridges and delineates two hydrophobic cavities. The inner surface of the main cavity is lined by non-polar residues that provide a hydrophobic environment for the palmitoyl moiety of the lipid. The head-group region of this lipid protrudes from the surface and makes several polar interactions with a conserved patch of basic residues at the entrance of the pocket. The alkyl chain of a second lipid is bound within an adjacent smaller cavity. The structure shows that binding of the lipid tails to the protein involves extensive hydrophobic interactions.


Journal of Virology | 2010

Structural Insights into the Molecular Mechanisms of Cauliflower Mosaic Virus Transmission by Its Insect Vector

François Hoh; Marilyne Uzest; Martin Drucker; Célia Plisson-Chastang; Patrick Bron; Stéphane Blanc; Christian Dumas

ABSTRACT Cauliflower mosaic virus (CaMV) is transmitted from plant to plant through a seemingly simple interaction with insect vectors. This process involves an aphid receptor and two viral proteins, P2 and P3. P2 binds to both the aphid receptor and P3, itself tightly associated with the virus particle, with the ensemble forming a transmissible viral complex. Here, we describe the conformations of both unliganded CaMV P3 protein and its virion-associated form. X-ray crystallography revealed that the N-terminal domain of unliganded P3 is a tetrameric parallel coiled coil with a unique organization showing two successive four-stranded subdomains with opposite supercoiling handedness stabilized by a ring of interchain disulfide bridges. A structural model of virus-liganded P3 proteins, folding as an antiparallel coiled-coil network coating the virus surface, was derived from molecular modeling. Our results highlight the structural and biological versatility of this coiled-coil structure and provide new insights into the molecular mechanisms involved in CaMV acquisition and transmission by the insect vector.


Nature | 2017

Structural insights into adiponectin receptors suggest ceramidase activity

Ieva Vasiliauskaité-Brooks; Remy Sounier; Pascal Rochaix; Gaëtan Bellot; Mathieu Fortier; François Hoh; Luigi De Colibus; Chérine Bechara; Essa M. Saied; Christoph Arenz; Cedric Leyrat; Sébastien Granier

Adiponectin receptors (ADIPORs) are integral membrane proteins that control glucose and lipid metabolism by mediating, at least in part, a cellular ceramidase activity that catalyses the hydrolysis of ceramide to produce sphingosine and a free fatty acid (FFA). The crystal structures of the two receptor subtypes, ADIPOR1 and ADIPOR2, show a similar overall seven-transmembrane-domain architecture with large unoccupied cavities and a zinc binding site within the seven transmembrane domain. However, the molecular mechanisms by which ADIPORs function are not known. Here we describe the crystal structure of ADIPOR2 bound to a FFA molecule and show that ADIPOR2 possesses intrinsic basal ceramidase activity that is enhanced by adiponectin. We also identify a ceramide binding pose and propose a possible mechanism for the hydrolytic activity of ADIPOR2 using computational approaches. In molecular dynamics simulations, the side chains of residues coordinating the zinc rearrange quickly to promote the nucleophilic attack of a zinc-bound hydroxide ion onto the ceramide amide carbonyl. Furthermore, we present a revised ADIPOR1 crystal structure exhibiting a seven-transmembrane-domain architecture that is clearly distinct from that of ADIPOR2. In this structure, no FFA is observed and the ceramide binding pocket and putative zinc catalytic site are exposed to the inner membrane leaflet. ADIPOR1 also possesses intrinsic ceramidase activity, so we suspect that the two distinct structures may represent key steps in the enzymatic activity of ADIPORs. The ceramidase activity is low, however, and further studies will be required to characterize fully the enzymatic parameters and substrate specificity of ADIPORs. These insights into ADIPOR function will enable the structure-based design of potent modulators of these clinically relevant enzymes.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2009

Structure of Debaryomyces castellii CBS 2923 phytase

M. Ragon; François Hoh; André Aumelas; Laurent Chiche; G. Moulin; H. Boze

Phytate (myo-inositol hexakisphosphate) is the primary storage form of phosphate in seeds and legumes (Reddy et al., 1982). Phytases are phosphatases that hydrolyze phytate to less phosphorylated myo-inositol derivatives and inorganic phosphate. The crystal structure of phytase from Debaryomyces castellii has been determined at 2.3 A resolution. The crystals belonged to space group P6(5)22, with unit-cell parameters a = 121.65, c = 332.24 A. The structure was solved by molecular replacement and refined to a final R factor of 15.7% (R(free) = 20.9%). The final model consists of a dimer (with two monomers of 458 residues), five NAG molecules and 628 water molecules.

Collaboration


Dive into the François Hoh's collaboration.

Top Co-Authors

Avatar

Marie-Paule Strub

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

André Padilla

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Yinshan Yang

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Laurent Chiche

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Barthe

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Luc Ferrer

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge