Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Jean is active.

Publication


Featured researches published by François Jean.


Frontiers in Immunology | 2012

Pandemic H1N1 Influenza Infection and Vaccination in Humans Induces Cross-Protective Antibodies that Target the Hemagglutinin Stem

Christy A. Thomson; Yanni Wang; Linda Jackson; Melanie Olson; W. Wang; A. Liavonchanka; L. Keleta; V. Silva; Sandra Diederich; R. B. Jones; J. Gubbay; John Pasick; Martin Petric; François Jean; V. G. Allen; E. G. Brown; J. M. Rini; John W. Schrader

Most monoclonal antibodies (mAbs) generated from humans infected or vaccinated with the 2009 pandemic H1N1 (pdmH1N1) influenza virus targeted the hemagglutinin (HA) stem. These anti-HA stem mAbs mostly used IGHV1-69 and bound readily to epitopes on the conventional seasonal influenza and pdmH1N1 vaccines. The anti-HA stem mAbs neutralized pdmH1N1, seasonal influenza H1N1 and avian H5N1 influenza viruses by inhibiting HA-mediated fusion of membranes and protected against and treated heterologous lethal infections in mice with H5N1 influenza virus. This demonstrated that therapeutic mAbs could be generated a few months after the new virus emerged. Human immunization with the pdmH1N1 vaccine induced circulating antibodies that when passively transferred, protected mice from lethal, heterologous H5N1 influenza infections. We observed that the dominant heterosubtypic antibody response against the HA stem correlated with the relative absence of memory B cells against the HA head of pdmH1N1, thus enabling the rare heterosubtypic memory B cells induced by seasonal influenza and specific for conserved sites on the HA stem to compete for T-cell help. These results support the notion that broadly protective antibodies against influenza would be induced by successive vaccination with conventional influenza vaccines based on subtypes of HA in viruses not circulating in humans.


Journal of Virology | 2012

Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection

Emma-Kate Loveday; Victoria Svinti; Sandra Diederich; John Pasick; François Jean

ABSTRACT MicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to virus-associated diseases involving members of the Hepacivirus, Herpesvirus, and Retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the life cycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenicity swine-origin infA (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin infA (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral life cycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time points during the viral life cycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including the immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.


Journal of Biological Chemistry | 2006

Identification of a pH Sensor in the Furin Propeptide That Regulates Enzyme Activation

Sylvain F. Feliciangeli; Laurel Thomas; Gregory K. Scott; Ezhilkani Subbian; Chien Hui Hung; Sean S. Molloy; François Jean; Ujwal Shinde; Gary Thomas

The folding and activation of furin occur through two pH- and compartment-specific autoproteolytic steps. In the endoplasmic reticulum (ER), profurin folds under the guidance of its prodomain and undergoes an autoproteolytic excision at the consensus furin site Arg-Thr-Lys-Arg107↓ generating an enzymatically masked furin-propeptide complex competent for transport to late secretory compartments. In the mildly acidic environment of the trans-Golgi network/endosomal system, the bound propeptide is cleaved at the internal site 69HRGVTKR75↓, unmasking active furin capable of cleaving substrates in trans. Here, by using cellular, biochemical, and modeling studies, we demonstrate that the conserved His69 is a pH sensor that regulates the compartment-specific cleavages of the propeptide. In the ER, unprotonated His69 stabilizes a solvent-accessible hydrophobic pocket necessary for autoproteolytic excision at Arg107. Profurin molecules unable to form the hydrophobic pocket, and hence, the furin-propeptide complex, are restricted to the ER by a PACS-2- and COPI-dependent mechanism. Once exposed to the acidic pH of the late secretory pathway, protonated His69 disrupts the hydrophobic pocket, resulting in exposure and cleavage of the internal cleavage site at Arg75 to unmask the enzyme. Together, our data explain the pH-regulated activation of furin and how this His-dependent regulatory mechanism is a model for other proteins.


PLOS Pathogens | 2012

Human Subtilase SKI-1/S1P Is a Master Regulator of the HCV Lifecycle and a Potential Host Cell Target for Developing Indirect-Acting Antiviral Agents

Andrea D. Olmstead; Wolfgang Knecht; Ina Lazarov; Surjit B. Dixit; François Jean

HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1) – or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of novel broad-spectrum biopharmaceuticals that could lead to novel indirect-acting antiviral options with the current standard of care.


PLOS ONE | 2012

Interleukin-7, but Not Thymic Stromal Lymphopoietin, Plays a Key Role in the T Cell Response to Influenza A Virus

Adam W. Plumb; Daniel T. Patton; Jung Hee Seo; Emma-Kate Loveday; François Jean; Steven F. Ziegler; Ninan Abraham

The immune response to viral infection is ideally rapid and specific, resulting in viral clearance and establishment of immune memory. Some viruses such as HIV can evade such responses leading to chronic infection, while others like Influenza A can elicit a severe inflammatory response with immune-related complications including death. Cytokines play a major role in shaping the appropriate outcomes to infection. While Interleukin-7 (IL-7) has a critical role in T and B cell development, treatment with IL-7 has recently been shown to aid the adaptive T cell response in clearance of chronic viral infection. In contrast, the IL-7-related cytokine thymic stromal lymphopoietin (TSLP) has a limited role in lymphocyte development but is important in the immune response to parasitic worms and allergens. The role for these cytokines in the immune response to an acute viral infection is unclear. IL-7 and TSLP share IL-7Rα as part of their heterodimeric receptors with the gamma common chain (γc) and TSLPR, respectively. We investigated the role of IL-7 and TSLP in the primary immune response to influenza A infection using hypomorphic IL-7Rα (IL-7Rα449F) and TSLPR−/− mice. We found that IL-7, but not TSLP, plays an important role in control of influenza A virus. We also showed that IL-7 signaling was necessary for the generation of a robust influenza A-specific CD4 and CD8 T cell response and that this requirement is intrinsic to CD8 T cells. These findings demonstrate a significant role for IL-7 during acute viral infection.


Journal of General Virology | 2015

Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin.

Emma-Kate Loveday; Sandra Diederich; John Pasick; François Jean

A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.


Endocrinology | 2011

Modulation of PC1/3 activity by self-interaction and substrate binding.

Akina Hoshino; Dorota Kowalska; François Jean; Claude Lazure; Iris Lindberg

Prohormone convertase (PC)1/3 is a eukaryotic serine protease in the subtilase family that participates in the proteolytic maturation of prohormone and neuropeptide precursors such as proinsulin and proopiomelanocortin. Despite the important role of this enzyme in peptide synthesis, how PC1/3 activity is regulated is still poorly understood. Using ion exchange chromatography and two-dimensional gel electrophoresis we found that natural PC1/3 present in AtT-20 cells and bovine chromaffin granules, as well as recombinant PC1/3 secreted from overexpressing Chinese hamster ovary cells, exists as multiple ionic forms. Gel filtration and cross-linking studies revealed that protein oligomerization and aggregation contribute greatly to variability in surface charge. The most acidic forms of PC1/3 contained both inactive aggregates as well as oligomerized 87-kDa PC1/3 that exhibited stable activity which was partially latent and could be revealed by dilution. No such latency was observed for the more basic, 66/74-kDa forms of PC1/3. Fractions containing these species were stabilized by preincubation with micromolar concentrations of either fluorogenic substrate or peptides containing pairs of basic residues. In addition, the most active form of 87-kDa PC1/3, a probable homodimer, was activated by preincubation with these same peptides. Cleavage by PC1/3 is often the initiating step in the biosynthetic pathway for peptide hormones, implying that this is a natural step for regulation. Our data suggest that enzyme oligomerization and peptide stabilization represent important contributing factors for the control of PC1/3 activity within secretory granules.


Biological Chemistry | 2006

Development of a red-shifted fluorescence-based assay for SARS-coronavirus 3CL protease: identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata

Pamela Hamill; Derek Hudson; Richard Y. T. Kao; Polly Chow; Meera Raj; Hongyan Xu; Martin J. Richer; François Jean

Abstract SARS-coronavirus (SARS-CoV) encodes a main protease, 3CLpro, which plays an essential role in the viral life cycle and is currently the prime target for discovering new anti-coronavirus agents. In this article, we report our success in developing a novel red-shifted (RS) fluorescence-based assay for 3CLpro and its application for identifying small-molecule anti-SARS agents from marine organisms. We have synthesised and characterised the first generation of a red-shifted internally quenched fluorogenic substrate (RS-IQFS) for 3CLpro based on resonance energy transfer between the donor and acceptor pair CAL Fluor Red 610 and Black Hole Quencher-1 (K m and k cat values of 14 μM and 0.65 min-1). The RS-IQFS primary sequence was selected based on the results of our screening analysis of 3CLpro performed using a series of blue-shifted (BS)-IQFSs corresponding to the 3CLpro-mediated cleavage junctions of the SARS-CoV polyproteins. In contrast to BS-IQFSs, the RS-IQFS was not susceptible to fluorescence interference from coloured samples and allowed for successful screening of marine natural products and identification of a coumarin derivative, esculetin-4-carboxylic acid ethyl ester, a novel 3CLpro inhibitor (IC50=46 μM) and anti-SARS agent (EC50=112 μM; median toxic concentration >800 μM) from the tropical marine sponge Axinella corrugata.


Journal of the Brazilian Chemical Society | 2007

A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis

Simone P. Lira; Mirna H. R. Seleghim; David E. Williams; Frederic Marion; Pamela Hamill; François Jean; Raymond J. Andersen; Eduardo Hajdu; Roberto G. S. Berlinck

Two coumarin derivatives, esculetin-4-carboxylic acid methyl ester (1) and esculetin-4-carboxylic acid ethyl ester (2), have been isolated from the marine sponge Axinella cf. corrugata. Structure determination included analysis of spectroscopic data and total synthesis of compound 2. These are the first coumarin derivatives isolated from a marine sponge. The ethyl ester 2 was found to be an in vitro inhibitor of SARS 3CL-protease and an effective inhibitor of SARS-CoV replication in Vero cells at non-cytotoxic concentrations.


Biological Chemistry | 2006

Single-cell resolution imaging of membrane-anchored hepatitis C virus NS3/4A protease activity

Morgan M. Martin; François Jean

Abstract The study of host and viral membrane-associated proteases has been hampered due to a lack of in vivo assays. We report here the development of a cell-based fluorescence assay for detecting hepatitis C virus (HCV) NS3/4A juxtamembrane protease activity. Intracellular membrane-anchored protein substrates were engineered comprising: (1) an endoplasmic reticulum targeting domain, the HCV NS5A N-terminal amphipathic α-helix; (2) a NS3/4A-specific cleavage site; and (3) a red fluorescent reporter group, DsRed. The results of our immunofluorescence and Western blotting studies demonstrate that our membrane-bound fluorescent probe was cleaved specifically and efficiently by NS3/4A expressed in human cells.

Collaboration


Dive into the François Jean's collaboration.

Top Co-Authors

Avatar

Martin J. Richer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Andrea D. Olmstead

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Pamela Hamill

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Morgan M. Martin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Andersen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Anastasia Hyrina

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Emma-Kate Loveday

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

John Pasick

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Meera Raj

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sandra Diederich

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge