Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francois Lenoir is active.

Publication


Featured researches published by Francois Lenoir.


Nature | 2016

Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

Yan Chen; Matthew J. LaMarche; Ho Man Chan; Peter Fekkes; Garcia-Fortanet J; Acker Mg; Brandon Antonakos; Christine Hiu-Tung Chen; Zhouliang Chen; Vesselina G. Cooke; Zhan Deng; Fei F; Brant Firestone; Michelle Fodor; Cary Fridrich; Hui Gao; Denise Grunenfelder; Hao Hx; Jacob J; Samuel Ho; Kathy Hsiao; Zhao B. Kang; Rajesh Karki; Mitsunori Kato; Jay Larrow; La Bonte Lr; Francois Lenoir; Gang Liu; Shumei Liu; Dyuti Majumdar

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Journal of Medicinal Chemistry | 2013

Identification of NVP-TNKS656: The Use of Structure-Efficiency Relationships To Generate a Highly Potent, Selective, and Orally Active Tankyrase Inhibitor.

Michael Shultz; Atwood Cheung; Christina A. Kirby; Brant Firestone; Jianmei Fan; Christine Hiu-Tung Chen; Zhouliang Chen; Donovan Noel Chin; Lucian DiPietro; Aleem Fazal; Yun Feng; Pascal D. Fortin; Ty Gould; Bharat Lagu; Huangshu Lei; Francois Lenoir; Dyuti Majumdar; Etienne Ochala; Mark G. Palermo; Ly Luu Pham; Minying Pu; Troy Smith; Travis Stams; Ronald C. Tomlinson; B. Barry Touré; Michael Scott Visser; Run Ming Wang; Nigel J. Waters; Wenlin Shao

Tankyrase 1 and 2 have been shown to be redundant, druggable nodes in the Wnt pathway. As such, there has been intense interest in developing agents suitable for modulating the Wnt pathway in vivo by targeting this enzyme pair. By utilizing a combination of structure-based design and LipE-based structure efficiency relationships, the core of XAV939 was optimized into a more stable, more efficient, but less potent dihydropyran motif 7. This core was combined with elements of screening hits 2, 19, and 33 and resulted in highly potent, selective tankyrase inhibitors that are novel three pocket binders. NVP-TNKS656 (43) was identified as an orally active antagonist of Wnt pathway activity in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic signature of binding, highly favorable physicochemical properties, and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor that is well suited for further in vivo validation studies.


Journal of Medicinal Chemistry | 2016

Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

Jorge Garcia Fortanet; Christine Hiu-Tung Chen; Ying-Nan P. Chen; Zhouliang Chen; Zhan Deng; Brant Firestone; Peter Fekkes; Michelle Fodor; Pascal D. Fortin; Cary Fridrich; Denise Grunenfelder; Samuel Ho; Zhao B. Kang; Rajesh Karki; Mitsunori Kato; Nick Keen; Laura R. Labonte; Jay Larrow; Francois Lenoir; Gang Liu; Shumei Liu; Franco Lombardo; Dyuti Majumdar; Matthew John Meyer; Mark G. Palermo; Lawrence Blas Perez; Minying Pu; Timothy Michael Ramsey; William R. Sellers; Michael Shultz

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


ACS Medicinal Chemistry Letters | 2013

The role of the acidity of N-heteroaryl sulfonamides as inhibitors of bcl-2 family protein-protein interactions.

B. Barry Touré; Karen Miller-Moslin; Naeem Yusuff; Lawrence Blas Perez; Michael Dore; Carol Joud; Walter Michael; Lucian DiPietro; Simon van der Plas; Michael McEwan; Francois Lenoir; Madelene Y. Hoe; Rajesh Karki; Clayton Springer; John Sullivan; Kymberly Levine; Catherine Fiorilla; Xiaoling Xie; Raviraj Kulathila; Kara Herlihy; Dale Porter; Michael Scott Visser

Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.


Journal of Medicinal Chemistry | 2015

Discovery and optimization of novel antagonists to the human neurokinin-3 receptor for the treatment of sex-hormone disorders (Part I).

Hamid R. Hoveyda; Graeme Fraser; Marie-Odile Roy; Guillaume Dutheuil; Frédéric Batt; Mohamed El Bousmaqui; Julien Korac; Francois Lenoir; Alexey Lapin; Sophie Noël; Sébastien Blanc

Neurokinin-3 receptor (NK3R) has recently emerged as important in modulating the tonic pulsatile gonadotropin-releasing hormone (GnRH) release. We therefore decided to explore NK3R antagonists as therapeutics for sex-hormone disorders that can potentially benefit from lowering GnRH pulsatility with consequent diminished levels of plasma luteinizing hormone (LH) and correspondingly attenuated levels of circulating androgens and estrogens. The discovery and lead optimization of a novel N-acyl-triazolopiperazine NK3R antagonist chemotype achieved through bioisosteric lead change from the high-throughput screening (HTS) hit is described. A concomitant improvement in the antagonist bioactivity and ligand lipophilic efficiency (LLE) parameter were the principal guidelines in the lead optimization efforts. Examples of advanced lead analogues to demonstrate the amenability of this chemotype to achieving a suitable pharmacokinetic (PK) profile are provided as well as pharmacokinetic-pharmacodynamic (PKPD) correlations to analyze the trends observed for LH inhibition in castrated rats and monkeys that served as preliminary in vivo efficacy models.


ACS Medicinal Chemistry Letters | 2015

Optimization of Novel Antagonists to the Neurokinin-3 Receptor for the Treatment of Sex-Hormone Disorders (Part II).

Hamid R. Hoveyda; Graeme Fraser; Guillaume Dutheuil; Mohamed El Bousmaqui; Julien Korac; Francois Lenoir; Alexey Lapin; Sophie Noël

Further lead optimization on N-acyl-triazolopiperazine antagonists to the neurokinin-3 receptor (NK3R) based on the concurrent improvement in bioactivity and ligand lipophilic efficiency (LLE) is reported. Overall, compound 3 (LLE > 6) emerged as the most efficacious in castrated rat and monkey to lower plasma LH, and it displayed the best off-target safety profile that led to its clinical candidate nomination for the treatment of sex-hormone disorders.


Journal of Medicinal Chemistry | 2017

Design, Synthesis, and Properties of a Potent Inhibitor of Pseudomonas aeruginosa Deacetylase LpxC.

Grazia Piizzi; David Thomas Parker; Yunshan Peng; Markus Dobler; Anup Patnaik; Som Wattanasin; Eugene Liu; Francois Lenoir; Jill Nunez; John E. Kerrigan; David McKenney; Colin P. Osborne; Donghui Yu; Leanne Lanieri; Jade Bojkovic; JoAnn Dzink-Fox; Maria-Dawn Lilly; Elizabeth R. Sprague; Yipin Lu; Hongming Wang; Srijan Ranjitkar; Lili Xie; Bing Wang; Meir Glick; Lawrence G. Hamann; Ruben Tommasi; Xia Yang; Charles R. Dean

Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.


Bioorganic & Medicinal Chemistry | 2018

N-Thiazolylamide-based free fatty-acid 2 receptor agonists: Discovery, lead optimization and demonstration of off-target effect in a diabetes model

Hamid R. Hoveyda; Graeme Fraser; Ludivine Zoute; Guillaume Dutheuil; Didier Schils; Cyrille Evangelos Brantis; Alexey Lapin; Julien Parcq; Sandra Guitard; Francois Lenoir; Mohamed El Bousmaqui; Sarah Rorive; Sandrine Hospied; Sébastien Blanc; Jérôme Bernard; Frédéric Ooms; Joanne C. McNelis; Jerrold M. Olefsky

Free fatty acid-2 (FFA2) receptor is a G-protein coupled receptor of interest in the development of therapeutics in metabolic and inflammatory disease areas. The discovery and optimization of an N-thiazolylamide carboxylic acid FFA2 agonist scaffold is described. Dual key objectives were to i) evaluate the potential of this scaffold for lead optimization in particular with respect to safety de-risking physicochemical properties, i.e. lipophilicity and aromatic content, and ii) to demonstrate the utility of selected lead analogues from this scaffold in a pertinent in vivo model such as oral glucose tolerance test (OGTT). As such, a concomitant improvement in bioactivity together with lipophilic ligand efficiency (LLE) and fraction sp3 content (Fsp3) parameters guided these efforts. Compound 10 was advanced into studies in mice on the basis of its optimized profile vs initial lead 1 (ΔLLE = 0.3, ΔFsp3 = 0.24). Although active in OGTT, 10 also displayed similar activity in the FFA2-knockout mice. Given this off-target OGTT effect, we discontinued development of this FFA2 agonist scaffold.


Archive | 2014

3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant idh

Thomas Caferro; Young Shin Cho; Abran Costales; Huangshu Lei; Francois Lenoir; Julian Levell; Gang Liu; Mark G. Palermo; Keith B. Pfister; Martin Sendzik; Cynthia Shafer; Michael Shultz; Troy Smith; James Sutton; Bakary-Barry Toure; Fan Yang; Qian Zhao


Archive | 2009

Organic compounds for applications in bacterial infections treatment

Markus Dobler; Francois Lenoir; David Thomas Parker; Yunshan Peng; Grazia Piizzi; Sompong Wattanasin

Collaboration


Dive into the Francois Lenoir's collaboration.

Researchain Logo
Decentralizing Knowledge