Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Paquet-Durand is active.

Publication


Featured researches published by François Paquet-Durand.


Molecular Neurobiology | 2008

Photoreceptor cell death mechanisms in inherited retinal degeneration.

Javier Sancho-Pelluz; Blanca Arango-Gonzalez; Stefan Kustermann; Francisco J. Romero; Theo van Veen; Eberhart Zrenner; Per Ekström; François Paquet-Durand

Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.


Investigative Ophthalmology & Visual Science | 2009

Spectral Domain Optical Coherence Tomography in Mouse Models of Retinal Degeneration

Gesine Huber; Susanne C. Beck; Christian Grimm; Ayse Sahaboglu-Tekgöz; François Paquet-Durand; Andreas Wenzel; Peter Humphries; T. Michael Redmond; Mathias W. Seeliger; M. Dominik Fischer

PURPOSE Spectral domain optical coherence tomography (SD-OCT) allows cross-sectional visualization of retinal structures in vivo. Here, the authors report the efficacy of a commercially available SD-OCT device to study mouse models of retinal degeneration. METHODS C57BL/6 and BALB/c wild-type mice and three different mouse models of hereditary retinal degeneration (Rho(-/-), rd1, RPE65(-/-)) were investigated using confocal scanning laser ophthalmoscopy (cSLO) for en face visualization and SD-OCT for cross-sectional imaging of retinal structures. Histology was performed to correlate structural findings in SD-OCT with light microscopic data. RESULTS In C57BL/6 and BALB/c mice, cSLO and SD-OCT imaging provided structural details of frequently used control animals (central retinal thickness, CRT(C57BL/6) = 237 +/- 2 microm and CRT(BALB/c) = 211 +/- 10 microm). RPE65(-/-) mice at 11 months of age showed a significant reduction of retinal thickness (CRT(RPE65) = 193 +/- 2 microm) with thinning of the outer nuclear layer. Rho(-/-) mice at P28 demonstrated degenerative changes mainly in the outer retinal layers (CRT(Rho) = 193 +/- 2 microm). Examining rd1 animals before and after the onset of retinal degeneration allowed monitoring of disease progression (CRT(rd1 P11) = 246 +/- 4 microm, CRT(rd1 P28) = 143 +/- 4 microm). Correlation of CRT assessed by histology and SD-OCT was high (r(2) = 0.897). CONCLUSIONS The authors demonstrated cross-sectional visualization of retinal structures in wild-type mice and mouse models for retinal degeneration in vivo using a commercially available SD-OCT device. This method will help to reduce numbers of animals needed per study by allowing longitudinal study designs and will facilitate characterization of disease dynamics and evaluation of putative therapeutic effects after experimental interventions.


Molecular Therapy | 2010

Restoration of Cone Vision in the CNGA3 −/− Mouse Model of Congenital Complete Lack of Cone Photoreceptor Function

Stylianos Michalakis; Regine Mühlfriedel; Naoyuki Tanimoto; Vidhyasankar Krishnamoorthy; Susanne Koch; M. Dominik Fischer; Elvir Becirovic; Lin Bai; Gesine Huber; Susanne C. Beck; Edda Fahl; Hildegard Büning; François Paquet-Durand; Xiangang Zong; Tim Gollisch; Martin Biel; Mathias W. Seeliger

Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3(-/-) mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3(-/-) mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3(-/-) mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.


Journal of Neurochemistry | 2006

Calpain is activated in degenerating photoreceptors in the rd1 mouse

François Paquet-Durand; Seifollah Azadi; Stefanie M. Hauck; Marius Ueffing; Theo van Veen; Per Ekström

The retinal degeneration (rd)1 mouse displays an inherited retinal degeneration and therefore allows studies of the molecular mechanisms behind the blinding disease retinitis pigmentosa. Activation of the calcium‐dependent protease calpain has been suggested to play an important role in cell death in various tissues, but little is known about the expression and activity of calpain during inherited retinal degeneration. Using microarray techniques, transcript levels of cyclic AMP response element‐binding protein (CREB)‐1, calpastatin and of various calpain genes were analysed in the rd1 mouse compared with its wild‐type control. Expression of distinct calpain isoforms and calpastatin was investigated using immunofluorescence and immunoblotting. Gene transcription and protein expression levels were compared with calpain activity using an enzymatic assay that allowed monitoring of calpain activity at the cellular level. We found that CREB‐1 and calpastatin expression was reduced in rd1 retinas, whereas calpain activity was substantially increased in rd1 photoreceptors. Calpain activity peaked at postnatal day 13, together with rd1 photoreceptor cell death. Calpain‐specific inhibitors decreased calpain activity in situ. These results indicate that activation of calpains correlates with rd1 photoreceptor cell death, which raises the possibility of using calpain inhibitors to prevent or delay photoreceptor degeneration.


The Journal of Neuroscience | 2007

Excessive Activation of Poly(ADP-Ribose) Polymerase Contributes to Inherited Photoreceptor Degeneration in the Retinal Degeneration 1 Mouse

François Paquet-Durand; J. Silva; Tanuja Talukdar; Leif Johnson; Seifollah Azadi; Theo van Veen; Marius Ueffing; Stefanie M. Hauck; Per Ekström

Retinitis pigmentosa (RP) is an inherited blinding disease for which there is no treatment available. It is characterized by a progressive and neurodegenerative loss of photoreceptors but the underlying mechanisms are poorly understood. Excessive activation of the enzyme poly(ADP-ribose) polymerase (PARP) has recently been shown to be involved in several neuropathologies. To investigate the possible role of PARP in retinal photoreceptor degeneration, we used the retinal degeneration 1 (rd1) mouse RP model to study PARP expression, PARP activity, and to test the effects of PARP inhibition on photoreceptor viability. PARP expression was found to be equal between rd1 and wild-type counterpart retinas. In contrast to this, a dramatic increase in both PARP activity per se and PARP product formation was detected by in situ assays in rd1 photoreceptors actively undergoing cell death. Furthermore, PARP activity colabeled with oxidatively damaged DNA and nuclear translocation of AIF (apoptosis-inducing factor), suggesting activation of PARP as a bridge between these events in the degenerating photoreceptors. The PARP-specific inhibitor PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide·HCl[ reduced the number of cells exhibiting death markers in a short-term retinal culture paradigm, a protective effect that was translated into an increased number of surviving photoreceptors when the inhibitor was used in a long-term culture setting. Our results thus demonstrate an involvement of PARP activity in rd1 photoreceptor cell death, which could have a bearing on the understanding of neurodegenerations as such. The findings also suggest that the therapeutical possibilities of PARP inhibition should include retinal diseases like RP.


Brain Research | 2007

CNTF + BDNF treatment and neuroprotective pathways in the rd1 mouse retina

Seifollah Azadi; Leif Johnson; François Paquet-Durand; Maria-Thereza R. Perez; Yiqin Zhang; Per Ekström; Theo van Veen

The rd1 mouse is a relevant model for studying the mechanisms of photoreceptor degeneration in retinitis pigmentosa. Treatment with ciliary neurotrophic factor (CNTF) in combination with brain derived neurotrophic factor (BDNF) is known to rescue photoreceptors in cultured rd1 retinal explants. To shed light on the underlying mechanisms, we studied the effects of 9 days (starting at postnatal day 2) in vitro CNTF+BDNF treatment on the endogenous production of CNTF, BDNF, fibroblast growth factor 2 (FGF2), or the activation of extracellular signal-regulated kinase (ERK), Akt and cAMP-response-element-binding protein (CREB) in retinal explants. In rd1 explants, CNTF+BDNF decreased the number of TUNEL-positive photoreceptors. The treatment also increased endogenous rd1 levels of CNTF and BDNF, but lowered the level of FGF2 expression in rd1 explants. When wild-type explants were treated, endogenous CNTF was similarly increased, while BDNF and FGF2 levels remained unaffected. In addition, treatment of rd1 retinas strongly increased the phosphorylation of ERK, Akt and CREB. In treated wild-type explants, the same parameters were either unchanged (ERK) or decreased (Akt and CREB). The results suggest a role for Akt, ERK and CREB in conveying the neuroprotective effect of CNTF+BDNF treatment in rd1 retinal explants.


Journal of Neuroscience Research | 2007

Calpain activity in retinal degeneration

François Paquet-Durand; Leif Johnson; Per Ekström

Retinal degenerations such as retinitis pigmentosa (RP) or glaucoma are a major cause of blindness in humans. Understanding the mechanisms underlying the various types of retinal degeneration is a pre‐requisite for the development of rational therapies for these diseases. Activation of the calcium dependent protease, calpain, has been suggested to play an important role in cell death in various neuronal tissues including the retina. Improved detection and analysis of calpain activity during degenerative processes is likely to expand the list of pathological conditions with calpain involvement. We give a short overview of the methods available for the detection of calpain activity, and briefly discuss properties of calpain inhibitors. We then discuss the role of calpains in different cell death mechanisms and review existing work on retinal degeneration and the possible involvement of calpains therein. The implication of calpains in retinal cell death raises the possibility to use calpain inhibitors to prevent or delay retinal degeneration.


Cell Death and Disease | 2010

Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse

Javier Sancho-Pelluz; M V Alavi; Ayse Sahaboglu; S. Kustermann; Pietro Farinelli; Seifollah Azadi; T. van Veen; Francisco J. Romero; François Paquet-Durand; Per Ekström

Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP.


Journal of Neurochemistry | 2009

PKG activity causes photoreceptor cell death in two retinitis pigmentosa models.

François Paquet-Durand; Stefanie M. Hauck; Theo van Veen; Marius Ueffing; Per Ekström

Photoreceptor degeneration in retinitis pigmentosa is one of the leading causes of hereditary blindness in the developed world. Although causative genetic mutations have been elucidated in many cases, the underlying neuronal degeneration mechanisms are still unknown. Here, we show that activation of cGMP‐dependent protein kinase (PKG) hallmarks photoreceptor degeneration in rd1 and rd2 human homologous mouse models. When induced in wild‐type retinae, PKG activity was both necessary and sufficient to trigger cGMP‐mediated photoreceptor cell death. Target‐specific, pharmacological inhibition of PKG activity in both rd1 and rd2 retinae strongly reduced photoreceptor cell death in organotypic retinal explants. Likewise, inhibition of PKG in vivo, using three different application paradigms, resulted in robust photoreceptor protection in the rd1 retina. These findings suggest a pivotal role for PKG activity in cGMP‐mediated photoreceptor degeneration mechanisms and highlight the importance of PKG as a novel target for the pharmacological intervention in RP.


PLOS ONE | 2011

Calpain and PARP Activation during Photoreceptor Cell Death in P23H and S334ter Rhodopsin Mutant Rats

Jasvir Kaur; Stine Mencl; Ayse Sahaboglu; Pietro Farinelli; Theo van Veen; Eberhart Zrenner; Per Ekström; François Paquet-Durand; Blanca Arango-Gonzalez

Retinitis pigmentosa (RP) is a heterogeneous group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness. Many human cases are caused by mutations in the rhodopsin gene. An important question regarding RP pathology is whether different genetic defects trigger the same or different cell death mechanisms. To answer this question, we analysed photoreceptor degeneration in P23H and S334ter transgenic rats carrying rhodopsin mutations that affect protein folding and sorting respectively. We found strong activation of calpain and poly(ADP-ribose) polymerase (PARP) in both mutants, concomitant with calpastatin down-regulation, increased oxidative DNA damage and accumulation of PAR polymers. These parameters were strictly correlated with the temporal progression of photoreceptor degeneration, mirroring earlier findings in the phosphodiesterase-6 mutant rd1 mouse, and suggesting execution of non-apoptotic cell death mechanisms. Interestingly, activation of caspases-3 and -9 and cytochrome c leakage—key events in apoptotic cell death—were observed only in the S334ter mutant, which also showed increased expression of PARP-1. The identification of the same metabolic markers triggered by different mutations in two different species suggests the existence of common cell death mechanisms, which is a major consideration for any mutation independent treatment.

Collaboration


Dive into the François Paquet-Durand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stylianos Michalakis

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge