Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Proulx.
Water Research | 2009
Alex Francisque; Manuel J. Rodriguez; Luis F. Miranda-Moreno; Rehan Sadiq; François Proulx
Heterotrophic plate count (HPC) constitutes a common indicator for monitoring of microbiological water quality in distribution systems (DS). This paper aims to identify factors explaining the spatiotemporal distribution of heterotrophic bacteria and model their occurrence in the distribution system. The case under study is the DS of Quebec City, Canada. The study is based on a robust database resulting from a sampling campaign carried out in about 50 DS locations, monitored bi-weekly over a three-year period. Models for explaining and predicting HPC levels were based on both one-level and multi-level Poisson regression techniques. The latter take into account the nested structure of data, the possible spatiotemporal correlation among HPC observations and the fact that sampling points, months and/or distribution sub-systems may represent clusters. Models show that the best predictors for spatiotemporal occurrence of HPC in the DS are: free residual chlorine that has an inverse relation with the HPC levels, water temperature and water ultraviolet absorbance, both having a positive impact on HPC levels. A sensitivity analysis based on the best performing model (two-level model) allowed for the identification of seasonal-based strategies to reduce HPC levels.
Journal of Environmental Management | 2011
Christelle Legay; Manuel J. Rodriguez; Rehan Sadiq; Jean Sérodes; Patrick Levallois; François Proulx
During disinfection, chlorine reacts with organic matter present in drinking water and forms various undesirable chlorinated by-products (CBPs). This paper describes a study of the spatial variability of human health risk (i.e., cancer effects) from CBP exposure through drinking water in a specific region. The region under study involves nine drinking water distribution systems divided into several zones based on their characteristics. The spatial distribution of cancer risk (CR) was estimated using two years of data (2006-2008) on various CBP species. In this analysis, trihalomethanes (THMs) and haloacetic acids (HAAs) served as surrogates for CBPs. Three possible routes of exposure (i.e., via ingestion, inhalation and dermal contact) were considered for each selected compound. The cancer risk assessment involved estimating a unit risk (R(T)) in each zone of the selected distribution systems. A probabilistic analysis based on Monte Carlo simulations was employed. Risk assessment results showed that cancer risk varied between systems, but also within individual systems. As a result, the population of the same region was not exposed to the same risk associated with CBPs in drinking water. Unacceptable levels (i.e., R(T) > 10(-4)) for the estimated CR were determined for several zones in the studied region. This study demonstrates that a spatial-based analysis performed to represent the spatial distribution of risk estimates can be helpful in identifying suitable risk management strategies. Suggestions for improving the risk analysis procedure are also presented.
Water Research | 2009
Annick Dion-Fortier; Manuel J. Rodriguez; Jean Sérodes; François Proulx
This study demonstrates that levels of trihalomethanes (THMs) increase considerably when cold water stagnates in residential pipes and, more significantly, when water remains in the hot water tank. Levels of haloacetic acids (HAAs) increase as well in both cases, but less significantly in comparison to THMs. The study also demonstrates that in both the plumbing system and residential hot water tank, chlorinated and brominated DBP species do not behave in the same manner. Finally, the study shows that sustained use of water in households helps to maintain THM and HAA levels close to those found in water of the distribution system. The results are useful to identify methods of indoor water use that minimize population exposure to DBPs and improve DBP exposure assessment for epidemiological studies.
Journal of Environmental Management | 2012
François Proulx; Manuel J. Rodriguez; Jean Sérodes; Christian Bouchard
The threshold of human perception in the detection of tastes and odors (T&O) relating to compounds in drinking water is variable. For example, chlorine can be detected at the ppm level and geosmin can be perceived at the ppt level. In this paper, sensory tests (using a human panel), physicochemical analyses (total and free residual chlorine, temperature, metals, geosmin, and 2-methylisoborneol (2MIB)) and microbiological analyses (algae, Actinomycetes and heterotrophic plate count) were performed for water samples collected during a seventeen-month period at ten different locations of a municipal distribution network of Quebec City (Canada). The results showed that different flavors(1) assessed by a panel and aggregated into global flavor intensity (GFI) vary considerably spatially and seasonally. Multiple regression analysis showed that the factors best explaining the variability of GFI are (in order) the season, the location, the concentration of total residual chlorine and the presence of cyanobacteria. Results also demonstrate that chlorine has a masking effect on other T&O.
International Journal of Environmental Analytical Chemistry | 2011
Julien Parinet; Manuel J. Rodriguez; Jean Sérodes; François Proulx
This paper describes a method of determining the following compounds in water characterised by complex matrices (raw waters and drinking waters): geosmin, 2-methylisoborneol (2-MIB), 2-isobutyl-3-methoxypyrazine (IBM), 2-isopropyl-3-methoxypyrazine (IPM) and 2,4,6-trichloroanisole (TCA). The method is carried out using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) and ion trap mass spectrometry (ITMS). Several parameters of extraction and desorption were optimised through the use of a Combi PAL autosampler to automate various tasks (temperature extraction, extraction time, stir speed). Quantities of NaCl and the liquid volume/total volume ratio were also optimised. Double fragmentation (tandem MS/MS) was optimised on the target compounds. The method resulted in good linearity obtained for concentrations of 1 to 100 ng L−1 and provided detection limits of approximately below 1 ng L−1. Good precision (1–8%) was obtained. This method was successfully applied to the analysis of earthy and musty odours in municipal raw source waters with high concentrations of natural organic matter and in the corresponding treated waters. This is the first time MS/MS has been used to analyse odorous compounds in waters destined for human consumption. In addition, the method as developed is simple to use and lends itself to easy interpretation of chromatograms.
International Journal of Systems Assurance Engineering and Management | 2011
Alex Francisque; Manuel J. Rodriguez; Rehan Sadiq; Luis F. Miranda; François Proulx
Heterotrophic plate count (HPC) is one of the most common indicators used to monitor microbiological water quality in distribution networks. This paper applies and compares two fuzzy rule-based models to estimate HPC levels in a distribution network using a limited number of water quality parameters. The proposed fuzzy rule-based models include Mamdani and TSK (Takagi, Sugeno, and Kang) algorithms. The models are discussed through a case study of a distribution network (DN) in Quebec City (Canada). Both models properly estimate when HPC levels (datum per datum) are low, however their predictive ability is limited when HPC levels are high. When the outputs (HPC levels) are converted into four classes and the models are used as “classifiers”, their performances are very good. The average percent deviation is lower for the TSK model (15%) than for Mamdani model (17%). Implemented as “classifiers”, both models can be used for identifying vulnerable locations for microbiological contamination within the DN. Given the complexity of the growth of HPC bacteria in water distribution networks and the involvement of numerous contributory factors; results obtained are “promising”. Nevertheless, strategies to improve the models are also discussed.
Journal of Environmental Engineering and Science | 2007
Manuel J. Rodriguez; Jean-B. Sérodes; Patrick Levallois; François Proulx
Water Research | 2006
Steven Levesque; Manuel J. Rodriguez; Jean Sérodes; Christine Beaulieu; François Proulx
Journal of Water Supply Research and Technology-aqua | 2009
Alex Francisque; Manuel J. Rodriguez; Rehan Sadiq; Luis F. Miranda; François Proulx
Journal of Water Supply Research and Technology-aqua | 2009
Pablo Montenegro; Manuel J. Rodriguez; Luis F. Miranda; Florent Joerin; François Proulx