Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francois Rigaut is active.

Publication


Featured researches published by Francois Rigaut.


Journal of The Optical Society of America A-optics Image Science and Vision | 1997

Estimation of the adaptive optics long-exposure point-spread function using control loop data

Jean-Pierre Veran; Francois Rigaut; Henri Maı̂tre; D. Rouan

Astronomical images obtained with adaptive optics systems can be enhanced by using image restoration techniques. However, this usually requires an accurate knowledge of the system point-spread function (PSF) which is variable in time. We present a method to estimate the PSF related to each image, using data from the adaptive optics control computer, namely, the wave-front sensor measurements and the commands to the deformable mirror, accumulated in synchronization with the acquisition. This method requires no extra observing time and has been successfully tested on PUEO, the Canada–France–Hawaii Telescope adaptive optics system. With this system, accurate PSF estimations could be achieved for guide stars of magnitude 13 or brighter.


Monthly Notices of the Royal Astronomical Society | 2014

Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration

Francois Rigaut; Benoit Neichel; Maxime Boccas; Céline d'Orgeville; Fabrice Vidal; Marcos A. van Dam; Gustavo Arriagada; Vincent Fesquet; Ramon Galvez; Gaston Gausachs; Chad Cavedoni; Angelic Ebbers; Stan Karewicz; Eric James; Javier Lührs; Vanessa Montes; Gabriel Perez; William Rambold; Roberto Rojas; Shane Walker; Matthieu Bec; Gelys Trancho; Michael Sheehan; Benjamin Irarrazaval; Corinne Boyer; Brent Ellerbroek; Ralf Flicker; Damien Gratadour; Aurea Garcia-Rissmann; Felipe Daruich

The Gemini multiconjugate adaptive optics system (GeMS) at the Gemini South telescope in Cerro Pachon is the first sodium-based multilaser guide star (LGS) adaptive optics system. It uses five LGSs and two deformable mirrors to measure and compensate for atmospheric distortions. The GeMS project started in 1999, and saw first light in 2011. It is now in regular operation, producing images close to the diffraction limit in the near-infrared, with uniform quality over a field of view of two square arcminutes. This paper is the first one in a two-paper review of GeMS. It describes the system, explains why and how it was built, discusses the design choices and trade-offs, and presents the main issues encountered during the course of the project. Finally, we briefly present the results of the system first light.


Astronomical Telescopes and Instrumentation | 2000

Principles, limitations, and performance of multiconjugate adaptive optics

Francois Rigaut; Brent Ellerbroek; Ralf Flicker

Multi-Conjugate Adaptive Optics (MCAO) holds the promise of moderate to large adaptively compensated field of view with uniform image quality. This paper is a first effort to analyze the fundamental limitations of such systems, and that are mainly related to the finite number of deformable mirrors and guide stars. We demonstrate that the ultimate limitation is due to the vertical discretization of the correction. This effect becomes more severe quite rapidly with increasing compensated field of view or decreasing wavelength, but does not depend at first order on the telescope aperture. We also discuss limitations associated with the use of laser guide stars and ELT related issues.


Monthly Notices of the Royal Astronomical Society | 2014

Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance

Benoit Neichel; Francois Rigaut; Fabrice Vidal; Marcos A. van Dam; Vincent Garrel; Eleazar R. Carrasco; Peter Pessev; Claudia Winge; Maxime Boccas; Céline d'Orgeville; Gustavo Arriagada; Andrew Serio; Vincent Fesquet; William Rambold; Javier Lührs; Cristian Moreno; Gaston Gausachs; Ramon Galvez; Vanessa Montes; Tomislav Vucina; Eduardo Marin; Cristian Urrutia; Ariel Lopez; Sarah J. Diggs; Claudio Marchant; Angelic Ebbers; Chadwick Trujillo; Matthieu Bec; Gelys Trancho; Peter J. McGregor

The Gemini Multi-conjugate Adaptive Optics System - GeMS, a facility instrument mounted on the Gemini South telescope, delivers a uniform, near di↵raction limited images at near infrared wavelengths (0.95 µm - 2.5 µm) over a field of view of 120 00 . GeMS is the first sodium layer based multi laser guide star adaptive optics system used in astronomy. It uses five laser guide stars distributed on a 60 00 square constellation to measure for atmospheric distortions and two deformable mirrors to compensate for it. In this paper, the second devoted to describe the GeMS project, we present the commissioning, overall performance and operational scheme of GeMS. Performance of each sub-system is derived from the commissioning results. The typical image quality, expressed in full with half maximum, Strehl ratios and variations over the field delivered by the system are then described. A discussion of the main contributor to performance limitation is carried-out. Finally, overheads and future system upgrades are described.


Journal of The Optical Society of America A-optics Image Science and Vision | 2001

Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics.

Brent L. Ellerbroek; Francois Rigaut

Multiconjugate adaptive optics (MCAO) is a technique for correcting turbulence-induced phase distortions in three dimensions instead of two, thereby greatly expanding the corrected field of view of an adaptive optics system. This is accomplished with use of multiple deformable mirrors conjugate to distinct ranges in the atmosphere, with actuator commands computed from wave-front sensor (WFS) measurements from multiple guide stars. Laser guide stars (LGSs) must be used (at least for the forseeable future) to achieve a useful degree of sky coverage in an astronomical MCAO system. Much as a single LGS cannot be used to measure overall wave-front tilt, a constellation of multiple LGSs at a common range cannot detect tilt anisoplanatism. This error alone will significantly degrade the performance of a MCAO system based on a single tilt-only natural guide star (NGS) and multiple tilt-removed LGSs at a common altitude. We present a heuristic, low-order model for the principal source of tilt anisoplanatism that suggests four possible approaches to eliminating this defect in LGS MCAO: (i) tip/tilt measurements from multiple NGS, (ii) a solution to the LGS tilt uncertainty problem, (iii) additional higher-order WFS measurements from a single NGS, or (iv) higher-order WFS measurements from both sodium and Rayleigh LGSs at different ranges. Sample numerical results for one particular MCAO system configuration indicate that approach (ii), if feasible, would provide the highest degree of tilt anisoplanatism compensation. Approaches (i) and (iv) also provide very useful levels of performance and do not require unrealistically low levels of WFS measurement noise. For a representative set of parameters for an 8-m telescope, the additional laser power required for approach (iv) is on the order of 2 W per Rayleigh LGS.


Monthly Notices of the Royal Astronomical Society | 2012

Atmospheric turbulence profiling using multiple laser star wavefront sensors

Angela Cortés; Benoit Neichel; Andrés Guesalaga; James Osborn; Francois Rigaut; Dani Guzman

This paper describes the data pre-processing and reduction methods together with SLOpe Detection And Ranging (SLODAR) analysis and wind profiling techniques for the Gemini South Multi-Conjugate Adaptive Optics System (GeMS). The wavefront gradient measurements of the five GeMS Shack–Hartmann sensors, each pointing to a laser guide star, are combined with the deformable mirror (DM) commands sent to three DMs optically conjugated at 0, 4.5 and 9 km in order to reconstruct pseudo-open loop slopes. These pseudo-open loop slopes are then used to reconstruct atmospheric turbulence profiles, based on the SLODAR and wind-profiling methods. We introduce the SLODAR method, and how it has been adapted to work in a closed-loop, multi-laser guide star system. We show that our method allows characterizing the turbulence of up to 16 layers for altitudes spanning from 0 to 19 km. The data pre-processing and reduction methods are described, and results obtained from observations made in 2011 are presented. The wind profiling analysis is shown to be a powerful technique not only for characterizing the turbulence intensity, wind direction and speed, but also as it can provide a verification tool for SLODAR results. Finally, problems such as the fratricide effect in multiple laser systems due to Rayleigh scattering, centroid gain variations, and limitations of the method are also addressed.


Astronomical Telescopes and Instrumentation | 2000

Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope

Ralf Flicker; Francois Rigaut; Brent Ellerbroek

This paper focuses on two main categories of the multiconjugate adaptive optics (MCAO) parameter space for performance optimization: the geometrical configuration of guide stars and deformable mirrors (DMs), and the wavefront reconstructors. From the first category it is shown how, for a fixed reconstructor and imaging wavelength, the performance metrics with a few important exceptions improve with an increasing number of (1) DMs, (2) actuators per DM and (3) guide stars. The metrics are seen to degrade with (1) an increasing field of compensation and (2) DM conjugation altitude mismatch with the significant turbulent atmospheric layers. In the second category, this study also compares the performance with a fixed MCAO configuration using the least- square estimator (LSE) and the maximum a posteriori estimator (MAP) for wavefront reconstruction. The MAP is shown to perform significantly better than the LSE at low or intermediate signal-to-noise ratios (SNRs), and somewhat better even in the absence of noise due to its a priori knowledge of the phase statistics.


Monthly Notices of the Royal Astronomical Society | 2014

Astrometric performance of the Gemini multiconjugate adaptive optics system in crowded fields

Benoit Neichel; Jessica R. Lu; Francois Rigaut; S. Mark Ammons; Eleazar R. Carrasco; Emmanuel Lassalle

The Gemini multiconjugate adaptive optics system (GeMS) is a facility instrument for the Gemini South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arc min field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide-field camera, GeMS/GSAOIs combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exoplanets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic Centre. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyse deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, undithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding 1 min, provided enough stars are available to remove high-order distortions. We show however that such performance is not reproducible for multi-epoch observations, and an additional systematic error of similar to 0.4 mas is evidenced. This systematic multi-epoch error is the dominant error term in the GeMS/GSAOI astrometric error budget, and it is thought to be due to time-variable distortion induced by gravity flexure.


Proceedings of SPIE | 2006

Laser guide star upgrade of Altair at Gemini North

Maxime Boccas; Francois Rigaut; Matthieu Bec; Benjamin Irarrazaval; Eric James; Angelic Ebbers; Céline d'Orgeville; Kenny Grace; Gustavo Arriagada; Stan Karewicz; Mike Sheehan; John R. White; Simon Chan

Altair is the general-purpose Adaptive Optics bench installed on Gemini North that has operated successfully with Natural Guide Star (NGS) since 2003. The original design and fabrication included an additional WaveFront Sensor (WFS) to enable operation with Laser Guide Star (LGS). Altair has been recently upgraded and functional commissioning was performed between June and November 2005. The insertion of a dichroic beamsplitter in the NGS path allows to reflect the 589nm light to the LGS wavefront sensor and transmit the visible light of the NGS (or Tip-Tilt Guide star -TTGS-) to the tip-tilt-focus sensors. We will review the various modifications made for this dual operation, both in hardware and software, and describe the steps and results of the integration and testing phase on the sky.


Proceedings of SPIE | 2008

Performance of the near-infrared coronagraphic imager on Gemini-South

Mark Richard Chun; Doug Toomey; Zahed Wahhaj; Beth A. Biller; Étienne Artigau; Tom Hayward; Michael C. Liu; Laird M. Close; Markus Hartung; Francois Rigaut; Christ Ftaclas

We present the coronagraphic and adaptive optics performance of the Gemini-South Near-Infrared Coronagraphic Imager (NICI). NICI includes a dual-channel imager for simultaneous spectral difference imaging, a dedicated 85-element curvature adaptive optics system, and a built-in Lyot coronagraph. It is specifically designed to survey for and image large extra-solar gaseous planets on the Gemini Observatory 8-meter telescope in Chile. We present the on-sky performance of the individual subsystems along with the end-to-end contrast curve. These are compared to our model predictions for the adaptive optics system, the coronagraph, and the spectral difference imaging.

Collaboration


Dive into the Francois Rigaut's collaboration.

Top Co-Authors

Avatar

Benoit Neichel

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Céline d'Orgeville

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxime Boccas

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Brent Ellerbroek

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Francis Bennet

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Price

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Andrés Guesalaga

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Kristina Uhlendorf

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge