Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Roudier is active.

Publication


Featured researches published by François Roudier.


PLOS Genetics | 2005

Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27

Franziska Turck; François Roudier; Sara Farrona; Marie-Laure Martin-Magniette; Elodie Guillaume; Nicolas Buisine; Séverine Gagnot; Robert A. Martienssen; George Coupland; Vincent Colot

TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) is the only Arabidopsis protein with overall sequence similarity to the HETEROCHROMATIN PROTEIN 1 (HP1) family of metazoans and S. pombe. TFL2/LHP1 represses transcription of numerous genes, including the flowering-time genes FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC), as well as the floral organ identity genes AGAMOUS (AG) and APETALA 3 (AP3). These genes are also regulated by proteins of the Polycomb repressive complex 2 (PRC2), and it has been proposed that TFL2/LHP1 represents a potential stabilizing factor of PRC2 activity. Here we show by chromatin immunoprecipitation and hybridization to an Arabidopsis Chromosome 4 tiling array (ChIP-chip) that TFL2/LHP1 associates with hundreds of small domains, almost all of which correspond to genes located within euchromatin. We investigated the chromatin marks to which TFL2/LHP1 binds and show that, in vitro, TFL2/LHP1 binds to histone H3 di- or tri-methylated at lysine 9 (H3K9me2 or H3K9me3), the marks recognized by HP1, and to histone H3 trimethylated at lysine 27 (H3K27me3), the mark deposited by PRC2. However, in vivo TFL2/LHP1 association with chromatin occurs almost exclusively and co-extensively with domains marked by H3K27me3, but not H3K9me2 or -3. Moreover, the distribution of H3K27me3 is unaffected in lhp1 mutant plants, indicating that unlike PRC2 components, TFL2/LHP1 is not involved in the deposition of this mark. Rather, our data suggest that TFL2/LHP1 recognizes specifically H3K27me3 in vivo as part of a mechanism that represses the expression of many genes targeted by PRC2.


The EMBO Journal | 2011

Integrative epigenomic mapping defines four main chromatin states in Arabidopsis

François Roudier; Ikhlak Ahmed; Caroline Bérard; Alexis Sarazin; Tristan Mary-Huard; Sandra Cortijo; Daniel Bouyer; Erwann Caillieux; Evelyne Duvernois-Berthet; Liza Al-Shikhley; Laurène Giraut; Barbara Després; Stéphanie Drevensek; Fredy Barneche; Sandra Dèrozier; Véronique Brunaud; Sébastien Aubourg; Arp Schnittger; Chris Bowler; Marie-Laure Martin-Magniette; Stéphane Robin; Michel Caboche; Vincent Colot

Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants.


The EMBO Journal | 1999

The mitotic inhibitor ccs52 is required for endoreduplication and ploidy‐dependent cell enlargement in plants

Angel Cebolla; José M. Vinardell; Ernö Kiss; Boglárka Oláh; François Roudier; Adam Kondorosi; Eva Kondorosi

Plant organs develop mostly post‐embryonically from persistent or newly formed meristems. After cell division arrest, differentiation frequently involves endoreduplication and cell enlargement. Factors controlling transition from mitotic cycles to differentiation programmes have not been identified yet in plants. Here we describe ccs52, a plant homologue of APC activators involved in mitotic cyclin degradation. The ccs52 cDNA clones were isolated from Medicago sativa root nodules, which exhibit the highest degree of endopolyploidy in this plant. ccs52 represents a small multigenic family and appears to be conserved in plants. Overexpression of ccs52 in yeast triggered mitotic cyclin degradation, cell division arrest, endoreduplication and cell enlargement. In Medicago, enhanced expression of ccs52 was found in differentiating cells undergoing endoreduplication. In transgenic M.truncatula plants, overexpression of the ccs52 gene in the antisense orientation resulted in partial suppression of ccs52 expression and decreased the number of endocycles and the volume of the largest cells. Thus, the ccs52 product may switch proliferating cells to differentiation programmes which, in the case of endocycles, result in cell size increments.


Science | 2009

A Role for RNAi in the Selective Correction of DNA Methylation Defects

Felipe Karam Teixeira; Fabiana Heredia; Alexis Sarazin; François Roudier; Martine Boccara; Constance Ciaudo; Corinne Cruaud; Julie Poulain; María Berdasco; Mario F. Fraga; Olivier Voinnet; Patrick Wincker; Manel Esteller; Vincent Colot

DNA methylation is essential for silencing transposable elements and some genes in higher eukaryotes, which suggests that this modification must be tightly controlled. However, accidental changes in DNA methylation can be transmitted through mitosis (as in cancer) or meiosis, leading to epiallelic variation. We demonstrated the existence of an efficient mechanism that protects against transgenerational loss of DNA methylation in Arabidopsis. Remethylation is specific to the subset of heavily methylated repeats that are targeted by the RNA interference (RNAi) machinery. This process does not spread into flanking regions, is usually progressive over several generations, and faithfully restores wild-type methylation over target sequences in an RNAi-dependent manner. Our findings suggest an important role for RNAi in protecting genomes against long-term epigenetic defects.


Current Opinion in Plant Biology | 2000

Plant cell-size control: growing by ploidy?

Eva Kondorosi; François Roudier; Emmanuel Gendreau

The size of plant cells is determined by genetic, structural and physical factors as well as by internal and external signals. Our knowledge of the molecular mechanisms of these controls is still rudimentary. Recent studies indicate that ploidy level exerts an important control on cell size. By increasing ploidy, endoreduplication may allow cells to reach extraordinary sizes. This process is widespread in plants and may provide a means to manipulate the cell volume.


PLOS Genetics | 2011

Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

Daniel Bouyer; François Roudier; Maren Heese; Ellen D. Andersen; Delphine Gey; Moritz K. Nowack; Justin Goodrich; Jean-Pierre Renou; Paul E. Grini; Vincent Colot; Arp Schnittger

Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.


Science | 2014

Mapping the Epigenetic Basis of Complex Traits

Sandra Cortijo; René Wardenaar; Maria Colomé-Tatché; Arthur Gilly; Mathilde Etcheverry; Karine Labadie; Erwann Caillieux; Jean-Marc Aury; Patrick Wincker; François Roudier; Ritsert C. Jansen; Vincent Colot; Frank Johannes

Quantifying the impact of heritable epigenetic variation on complex traits is an emerging challenge in population genetics. Here, we analyze a population of isogenic Arabidopsis lines that segregate experimentally induced DNA methylation changes at hundreds of regions across the genome. We demonstrate that several of these differentially methylated regions (DMRs) act as bona fide epigenetic quantitative trait loci (QTLepi), accounting for 60 to 90% of the heritability for two complex traits, flowering time and primary root length. These QTLepi are reproducible and can be subjected to artificial selection. Many of the experimentally induced DMRs are also variable in natural populations of this species and may thus provide an epigenetic basis for Darwinian evolution independently of DNA sequence changes. Genetic mapping reveals epigenetic changes associated with flowering time and root length. [Also see Perspective by Schmitz] Plant Epigenetics Quantitative trait loci (QTLs) are genetic regions associated with phenotypic traits that help to determine the underlying genetics controlling the magnitude of a specific trait. Cortijo et al. (p. 1145, published online 6 February; see the Perspective by Schmitz) identified epigenetic QTLs associated with differences in methylation marks (epiQTLs) controlling flowering time and root length in the model plant Arabidopsis. These epiQTLs were mapped in genetically identical lines that differ only in their methylation marks. A small number of QTLs were able to explain up to 90% of the heritable variation in these traits. Thus, in plants, the heritability of some complex traits can be determined by epigenetic variation.


The Plant Cell | 2003

Endoreduplication Mediated by the Anaphase-Promoting Complex Activator CCS52A Is Required for Symbiotic Cell Differentiation in Medicago truncatula Nodules

José M. Vinardell; Elena Fedorova; Angel Cebolla; Zoltán Kevei; Gábor V. Horváth; Zsolt Kelemen; Sylvie Tarayre; François Roudier; Peter Mergaert; Adam Kondorosi; Eva Kondorosi

In Medicago nodules, endoreduplication cycles and ploidy-dependent cell enlargement occur during the differentiation of bacteroid-containing nitrogen-fixing symbiotic cells. These events are accompanied by the expression of ccs52A, a plant ortholog of the yeast and animal cdh1/srw1/fzr genes, acting as a substrate-specific activator of the anaphase-promoting complex (APC) ubiquitin ligase. Because CCS52A is involved in the transition of mitotic cycles to endoreduplication cycles, we investigated the importance of somatic endoploidy and the role of the M. truncatula ccs52A gene in symbiotic cell differentiation. Transcription analysis and ccs52A promoter–driven β-glucuronidase activity in transgenic plants showed that ccs52A was dispensable for the mitotic cycles and nodule primordium formation, whereas it was induced before nodule differentiation. The CCS52A protein was present in the nucleus of endoreduplication-competent cells, indicating that it may activate APC constitutively during the endoreduplication cycles. Downregulation of ccs52A in transgenic M. truncatula plants drastically affected nodule development, resulting in lower ploidy, reduced cell size, inefficient invasion, and the maturation of symbiotic cells, accompanied by early senescence and finally the death of both the bacterium and plant cells. Thus, ccs52A expression is essential for the formation of large highly polyploid symbiotic cells, and endoreduplication is an integral part of normal nodule development.


Nature Communications | 2013

Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants

Chloé Marchive; François Roudier; Loren Castaings; Virginie Bréhaut; Eddy Blondet; Vincent Colot; Christian G. Meyer; Anne Krapp

Nitrate is both an important nutrient and a signalling molecule for plants. Although several components of the nitrate signalling pathway have been identified, their hierarchical organization remains unclear. Here we show that the localization of NLP7, a member of the RWP-RK transcription factor family, is regulated by nitrate via a nuclear retention mechanism. Genome-wide analyses revealed that NLP7 binds and modulates a majority of known nitrate signalling and assimilation genes. Our findings indicate that plants, like fungi and mammals, rely on similar nuclear retention mechanisms to instantaneously respond to the availability of key nutrients.


Trends in Genetics | 2009

Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more.

François Roudier; Felipe Karam Teixeira; Vincent Colot

Packaging DNA into chromatin is pivotal for the regulation of genome activity in eukaryotes. This chromatin-level control relies on a range of histone modifications and variants, chromatin-remodeling proteins and DNA methylation in plants and mammals. High-resolution maps have recently been obtained for several chromatin modifications in Arabidopsis, which provide a first glimpse at the organization of plant epigenomes. These maps suggest a pervasive involvement of transcriptional activity in indexing chromatin with reference to the underlying DNA sequence. However, to assess the contribution of chromatin dynamics to plant development and phenotypic plasticity, it will be necessary to shift from a static to a dynamic view of the Arabidopsis epigenome.

Collaboration


Dive into the François Roudier's collaboration.

Top Co-Authors

Avatar

Eva Kondorosi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Adam Kondorosi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Angel Cebolla

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Erwann Caillieux

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Bouyer

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

F. Foucher

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

János Györgyey

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chris Bowler

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge