François Rustenburg
VU University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Rustenburg.
Annals of the Rheumatic Diseases | 2007
T C T M van der Pouw Kraan; Carla A. Wijbrandts; L G M van Baarsen; A E Voskuyl; François Rustenburg; Saleh M. Ibrahim; Mike Fero; Ben A. C. Dijkmans; P P Tak; Cornelis L. Verweij
Background: Rheumatoid arthritis (RA) is a heterogeneous disease with unknown cause. Aim: To identify peripheral blood (PB) gene expression profiles that may distinguish RA subtypes. Methods: Large-scale expression profiling by cDNA microarrays was performed on PB from 35 patients and 15 healthy individuals. Differential gene expression was analysed by significance analysis of microarrays (SAM), followed by gene ontology analysis of the significant genes. Gene set enrichment analysis was applied to identify pathways relevant to disease. Results: A substantially raised expression of a spectrum of genes involved in immune defence was found in the PB of patients with RA compared with healthy individuals. SAM analysis revealed a highly significant elevated expression of interferon (IFN) type I regulated genes in patients with RA compared with healthy individuals, which was confirmed by gene ontology and pathway analysis, suggesting that this pathway was activated systemically in RA. A quantitative analysis revealed that increased expression of IFN-response genes was characteristic of approximately half of the patients (IFNhigh patients). Application of pathway analysis revealed that the IFNhigh group was largely different from the controls, with evidence for upregulated pathways involved in coagulation and complement cascades, and fatty acid metabolism, while the IFNlow group was similar to the controls. Conclusion: The IFN type I signature defines a subgroup of patients with RA, with a distinct biomolecular phenotype, characterised by increased activity of the innate defence system, coagulation and complement cascades, and fatty acid metabolism.
Cancer Cell | 2015
Myron G. Best; Nik Sol; Irsan E. Kooi; Jihane Tannous; Bart A. Westerman; François Rustenburg; Pepijn Schellen; Heleen Verschueren; Edward Post; Jan Koster; Bauke Ylstra; Najim Ameziane; Josephine C. Dorsman; Egbert F. Smit; Henk M.W. Verheul; David P. Noske; Jaap C. Reijneveld; R. Jonas A. Nilsson; Bakhos A. Tannous; Pieter Wesseling; Thomas Wurdinger
Summary Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based “liquid biopsies”.
Arthritis Research & Therapy | 2010
Lisa G. M. van Baarsen; Carla A. Wijbrandts; François Rustenburg; Tineke Cantaert; Tineke C. T. M. van der Pouw Kraan; Dominique Baeten; Ben A. C. Dijkmans; Paul P. Tak; Cornelis L. Verweij
IntroductionCross-regulation between TNF and type I IFN has been postulated to play an important role in autoimmune diseases. Therefore, we determined the effect of TNF blockade in rheumatoid arthritis (RA) on the type I IFN response gene activity in relation to clinical response.MethodsPeripheral blood from 33 RA patients was collected in PAXgene tubes before and after the start of infliximab treatment. In a first group of 15 patients the baseline expression of type I IFN-regulated genes was determined using cDNA microarrays and compared to levels one month after treatment. The remaining 18 patients were studied as an independent group for validation using quantitative polymerase chain reaction (qPCR).ResultsGene expression analysis revealed that anti-TNF antibody treatment induced a significant increase in type I IFN response gene activity in a subset of RA patients, whereas expression levels remained similar or were slightly decreased in others. The findings appear clinically relevant since patients with an increased IFN response gene activity after anti-TNF therapy had a poor clinical outcome. This association was confirmed and extended for an IFN response gene set consisting of OAS1, LGALS3BP, Mx2, OAS2 and SERPING1 in five EULAR good and five EULAR poor responders, by qPCR.ConclusionsRegulation of IFN response gene activity upon TNF blockade in RA is not as consistent as previously described, but varies between patients. The differential changes in IFN response gene activity appear relevant to the clinical outcome of TNF blockade in RA.
Annals of the Rheumatic Diseases | 2007
T C T M van der Pouw Kraan; Carla A. Wijbrandts; L G M van Baarsen; François Rustenburg; Cornelis L. Verweij; P P Tak
Objective: The response of rheumatoid arthritis (RA) patients to treatment with neutralising antibodies to tumour necrosis factor α (TNFα) is highly variable. The underlying mechanism for therapy responsiveness is currently unknown. We therefore evaluated the relationship between baseline molecular profiles of synovial tissues from RA patients and the clinical response to treatment with infliximab. Methods: Synovial biopsies were obtained by arthroscopy from 18 RA patients with active disease (28 joint count Disease Activity Score (DAS28)⩾3.2) before initiation of treatment with infliximab. All patients were on stable methotrexate treatment. Clinical response at 16 weeks was defined as a reduction in DAS28 of ⩾1.2, non-response as reduction in DAS28 <1.2. Large-scale gene expression profiling using microarrays was performed on synovial tissue samples. To identify biological processes in synovial biopsies that could discriminate between responders and non-responders, we performed pathway analysis on the expression profiles. Results: A total of 12 patients responded to therapy, while 6 patients failed to fulfil the response criteria. We identified several biological processes, related to inflammation, which were up-regulated in patients who responded to therapy, compared to those who did not show clinical improvement. Conclusion: These results indicate that patients with a high level of tissue inflammation are more likely to benefit from anti-TNFα treatment.
Genes and Immunity | 2006
L G M van Baarsen; T C T M van der Pouw Kraan; J J Kragt; François Rustenburg; T Hooper; J F Meilof; Mike Fero; Christine D. Dijkstra; C.H. Polman; Cornelis L. Verweij
Given the heterogeneous nature of multiple sclerosis (MS), we applied DNA microarray technology to determine whether variability is reflected in peripheral blood (PB) cells. In this study, we studied whole-blood gene expression profiles of 29 patients with relapsing-remitting MS (RRMS) and 25 age- and sex-matched healthy controls. We used microarrays with a complexity of 43K cDNAs. The data were analyzed using sophisticated pathway-level analysis in order to provide insight into the deregulated peripheral immune response programs in MS. We found a remarkable elevated expression of a spectrum of genes known to be involved in immune defense in the PB of MS patients compared to healthy individuals. Cluster analysis revealed that the increased expression of these genes was characteristic for approximately half of the patients. In addition, the gene signature in this group of patients was comparable with a virus response program. We conclude that the transcriptional signature of the PB cells reflects the heterogeneity of MS and defines a sub-population of RRMS patients, who exhibit an activated immune defense program that resembles a virus response program, which is supportive for a link between viruses and MS.
Arthritis & Rheumatism | 2010
Lisa G. M. van Baarsen; Wouter H Bos; François Rustenburg; Tineke C. T. M. van der Pouw Kraan; Gerrit Jan Wolbink; Ben A. C. Dijkmans; Dirkjan van Schaardenburg; Cornelis L. Verweij
OBJECTIVE To identify molecular features associated with the development of rheumatoid arthritis (RA), to understand the pathophysiology of preclinical development of RA, and to assign predictive biomarkers. METHODS The study group comprised 109 anti-citrullinated protein antibody (ACPA)- and/or rheumatoid factor-positive patients with arthralgia who did not have arthritis but were at risk of RA, and 25 patients with RA. The gene expression profiles of blood samples obtained from these patients were determined by DNA microarray analysis and quantitative polymerase chain reaction. RESULTS In 20 of the 109 patients with arthralgia who were at risk of RA, arthritis developed after a median of 7 months. Gene expression profiling of blood cells revealed heterogeneity among the at-risk patients, based on differential expression of immune-related genes. This report is the first to describe gene signatures relevant to the development of arthritis. Signatures significantly associated with arthritis development were involved in interferon (IFN)-mediated immunity, hematopoiesis, and chemokine/cytokine activity. Logistic regression analysis revealed that the odds ratio (OR) for developing arthritis within 12 months was 21.0 (95% confidence interval [95% CI] 2.8-156.1 [P = 0.003]) for the subgroup characterized by increased expression of genes involved in IFN-mediated immunity and/or cytokine/chemokine-activity. Genes involved in B cell immunology were associated with protection against progression to arthritis (OR 0.38, 95% CI 0.21-0.70 [P = 0.002]). These processes were reminiscent of those in patients with RA, implying that the preclinical phase of disease is associated with features of established disease. CONCLUSION The results of this study indicate that IFN-mediated immunity, hematopoiesis, and cell trafficking specify processes relevant to the progression of arthritis independent of ACPA positivity. These findings strongly suggest that certain gene signatures have value for predicting the progression to arthritis, which will pave the way to preventive medicine.
Genes and Immunity | 2008
T C T M van der Pouw Kraan; L G M van Baarsen; Carla A. Wijbrandts; Alexandre E. Voskuyl; François Rustenburg; Ben A. C. Dijkmans; P P Tak; Cornelis L. Verweij
Rheumatoid arthritis (RA) is a heterogeneous disease with unknown etiology. Here we aimed to distinguish RA subtypes based on peripheral blood (PB) gene expression profiles in comparison with a pathogen-response transcriptional program. PB was obtained from 35 RA patients and 15 healthy individuals. For expression profiling we used DNA microarrays. A combined cluster analysis of RA and control samples together with samples from a viral infection model revealed that the gene expression profile of a subgroup of RA patients (RAA) was reminiscent to that of poxvirus-infected macaques. Statistical analysis, followed by Gene Ontology analysis of the RAA patients confirmed that these patients form a distinct group, with activation of several host defense mechanisms that resemble a common host-pathogen response. Analysis of the promoter region of genes that were overexpressed in the RAA patients, revealed an enrichment of transcription factor binding sites for NFκB and interferon-activated transcription factors. Moreover, this subgroup of RA patients expressed significantly increased titers of anti-cyclic citrullinated peptide antibodies. We conclude that activation of a host-pathogen response defines a subgroup of RA patients characterized by increased autoreactivity against citrullinated proteins.
Genes and Immunity | 2009
C. L. Bos; L G M van Baarsen; Trieneke C. G. Timmer; M J Overbeek; N M Basoski; François Rustenburg; H J Thiesen; Ben A. C. Dijkmans; T C T M van der Pouw Kraan; A E Voskuyl; Cornelis L. Verweij
The objective of this study was to identify molecular profiles that may distinguish clinical subtypes in systemic sclerosis (SSc). Large-scale gene expression profiling was performed on peripheral blood (PB) from 12 SSc patients and 6 healthy individuals. Significance analysis of microarrays, two-way hierarchical cluster analysis and PANTHER (Protein ANalysis THrough Evolutionary Relationships) ontology classification were used to analyze the data. Quantitative PCR was applied for validation in a cohort of 43 SSc patients. The results show that the expression of genes involved in immune defense, cell cycle and signal transduction was significantly elevated in PB of SSc patients (n=12) compared with healthy individuals (n=6). SSc patients could be stratified into subgroups based on differential expression of genes induced by type I interferon (IFN) and genes involved in antimicrobial (AM) activity. Differential expression of type I IFN or AM signature genes was validated and extended in an independent cohort of 31 patients by quantitative PCR. Low expression of IFN response genes was associated with the presence of anti-centromere antibodies, whereas increased expression was associated with the appearance of digital ulcers. In conclusion, patients with SSc can be classified on the basis of differential expression of immune defense genes. Differences in the activity of the type I IFN response program stratify patients into two clinically relevant subgroups.
Genes and Immunity | 2010
L G M van Baarsen; Carla A. Wijbrandts; Dm Gerlag; François Rustenburg; T C T M van der Pouw Kraan; Ben A. C. Dijkmans; P P Tak; Cornelis L. Verweij
To provide insight into the pharmacological changes in the peripheral blood (PB) molecular profile induced by tumor necrosis factor (TNF)-blockade in patients with rheumatoid arthritis (RA), blood was obtained in PAXgene tubes from 33 RA patients before and 1 month after TNF-blocking therapy (infliximab). From 15 randomly chosen patients pre- and post-treatment gene expression profiles were determined. The remaining 18 RA patients served as validation cohort. A group-based paired analysis of the gene expression profiles from the post- vs pre-treatment samples revealed a signature of genes significantly regulated by TNF-blockade. Downregulated genes reflected several biological pathways such as inflammation, angiogenesis, B- and T-cell activation. Further analysis revealed that the pharmacological response signature was significantly regulated in all treated patients, irrespective of clinical response, which is indicative for the presence of an active TNF pathway in all RA patients. The data imply that all patients carried features of TNF bioactivity irrespective of clinical response. These results favor a model for the parallel presence of TNF-dependent and TNF-independent pathways in the individual RA patient. Clinical response status to TNF-blockade may be dependent on the relative contribution of TNF-independent effector pathways.
Cellular and Molecular Life Sciences | 2010
Lonneke Heldens; Ron P. H. Dirks; Sanne M. M. Hensen; Carla Onnekink; Siebe T. van Genesen; François Rustenburg; Nicolette H. Lubsen
To probe the limiting nodes in the chaperoning network which maintains cellular proteostasis, we expressed a dominant negative mutant of heat shock factor 1 (dnHSF1), the regulator of the cytoplasmic proteotoxic stress response. Microarray analysis of non-stressed dnHSF1 cells showed a two- or more fold decrease in the transcript level of 10 genes, amongst which are the (co-)chaperone genes HSP90AA1, HSPA6, DNAJB1 and HSPB1. Glucocorticoid signaling, which requires the Hsp70 and the Hsp90 folding machines, was severely impaired by dnHSF1, but fully rescued by expression of DNAJA1 or DNAJB1, and partially by ST13. Expression of DNAJB6, DNAJB8, HSPA1A, HSPB1, HSPB8, or STIP1 had no effect while HSP90AA1 even inhibited. PTGES3 (p23) inhibited only in control cells. Our results suggest that the DNAJ co-chaperones in particular become limiting in a depleted chaperoning network. Our results also suggest a difference between the transcriptomes of cells lacking HSF1 and cells expressing dnHSF1.