François Schosseler
Institut Charles Sadron
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Schosseler.
Physical Review E | 2007
Sébastien Manneville; Annie Colin; Gilles Waton; François Schosseler
The shear flow of a triblock copolymer micellar solution (PEO-PPO-PEO Pluronic P84 in brine) is investigated using simultaneous rheological and velocity profile measurements in the concentric cylinder geometry. We focus on two different temperatures below and above the transition temperature T{c} which was previously associated with the apparition of a stress plateau in the flow curve. (i) At T=37.0 degrees C<T{c}, the bulk flow remains homogeneous and Newtonian-like, although significant wall slip is measured at the rotor that can be linked to an inflexion point in the flow curve. (ii) At T=39.4 degrees C>T{c}, the stress plateau is shown to correspond to stationary shear-banded states characterized by two high shear rate bands close to the walls and a very weakly sheared central band, together with large slip velocities at the rotor. In both cases, the high shear branch of the flow curve is characterized by flow instability. Interpretations of wall slip, three-band structure, and instability are proposed in light of recent theoretical models and experiments.
Journal of Controlled Release | 2014
Alexandra Arranja; André P. Schroder; Marc Schmutz; Gilles Waton; François Schosseler; Eduardo Mendes
A UV-cross-linkable agent was incorporated and polymerized in Pluronic micelle core to create an interpenetrating polymer network (IPN) of poly(pentaerythritol tetraacrylate). This stabilization prevented micelle disruption below the critical micelle temperature (CMT) and concentration (CMC), while maintaining the integrity of the PEO corona and the hydrophobic properties of the PPO core. The prepared stabilized spherical micelles of Pluronic P94 and F127 presented hydrodynamic diameters ranging from 40 to 50 nm. The stability of cross-linked Pluronic micelles at 37 °C in the presence of serum proteins was studied and no aggregation of the micelles was observed, revealing the colloidal stability of the system. Cytotoxicity experiments in NIH/3T3 mouse fibroblasts revealed that the presence of the cross-linking agent did not induce any further toxicity in comparison to the respective pure polymer solutions. Furthermore, stabilized micelles of Pluronic P94 were shown to be less toxic than the polymer itself. A hydrophobic fluorescent probe (Nile red) was absorbed in the cross-linked core of pre-stabilized micelles to mimic the incorporation of a poorly water-soluble drug, and the internalization and intracellular localization of Nile red was studied by confocal microscopy at different incubation times. Overall, the results indicate that Pluronic micelles stabilized by core cross-linking are capable of delivering hydrophobic components physically entrapped in the micelles, thus making them a potential candidate as a delivery platform for imaging or therapy of cancer.
Faraday Discussions | 1995
Giovanni Nisato; Rachid Skouri; François Schosseler; J. P. Munch; S. J. Candau
Poly(acrylic acid) gels ionized after preparation for different preparation concentrations and degrees of cross-linking and ionization, have been studied as a function of the swelling ratio and at swelling equilibrium. Measurements performed as a function of the polymer concentration indicated that for low swelling ratios ( < 100) the shear modulus follows a scaling law with an exponent in agreement with classical theories. For a given concentration the shear modulus has been found to decrease with the degree of ionization as qualitatively predicted by a recent model. At swelling equilibrium the shear modulus varies linearly with the osmotic pressure of the counter-ions in a large concentration domain and for various cross-linking densities. The osmotic prefactor values, found both by mechanical and by light-scattering experiments, were in agreement with various independent measurements performed on poly(acrylic acid) solutions.
Langmuir | 2012
I. Echavarri Franco; P. Lorchat; J.-P. Lamps; Marc Schmutz; André P. Schroder; J.-M. Catala; J. Combet; François Schosseler
The binding of cationic surfactants with varying alkyl chain length to a regiorandom conjugated polyanion, poly(3-thiophene acetic acid) (PTAA), is studied in an aqueous buffer by using absorption and emission spectroscopies, photon correlation spectroscopy, isothermal titration calorimetry, and cryogenic transmission electron microscopy. We study the mixed solutions as a function of composition ratio R of surfactant molecules to monomer units molar concentrations, at low polymer concentration and in a very wide composition range (10(-6) < R < 10(2)) below the critical micellar concentration. Upon surfactant binding, the molecularly dispersed chains first collapse progressively and then form new structures as the mixed aggregates get enriched in surfactant. The collapse leads to a strong decrease of the conjugation length and to a blue shift of the absorption spectra by 30 to 50 nm. The new structures are responsible for a new intense emission band at about 600 nm, red-shifted by nearly 130 nm from the initial emission maximum of the polymer (~472 nm). As the surfactant tail becomes shorter, the blue shift of the absorption spectra and the intensity raise of the new emission are delayed to larger composition ratios while their variations become smoother functions of the surfactant concentration. These particular spectroscopic properties of PTAA seem related to its unique combination of a strongly hydrophobic backbone, a large ratio of contour length to persistence length, and an overall good aqueous solubility. Our results show that such features are well suited to design a colorimetric biosensor at small composition ratio, and a fluorescent biomarker at large composition ratio.
Journal of Controlled Release | 2016
Alexandra Arranja; Antonia G. Denkova; Karolina Morawska; Gilles Waton; Sandra Van Vlierberghe; Peter Dubruel; François Schosseler; Eduardo Mendes
This work reveals how the physicochemical properties of Pluronic block copolymers influence significantly their interactions with cancer cells, whether in monolayer or spheroid cultures, and how different clinical applications can be foreseen. Two-dimensional (2D) and three-dimensional (3D) cell culture models were used to investigate the interactions of Pluronic carriers with different PEO block length and aggregation state (unimers versus cross-linked micelles) in HeLa and U87 cancer cells. Stabilized micelles of Pluronic P94 or F127 were obtained by polymerization of a crosslinking agent in the micelles hydrophobic core. Nanocarriers were functionalized with a fluorescent probe for visualization, and with a chelator for radiolabeling with Indium-111 and gamma-quantification. The 2D cell models revealed that the internalization pathways and ultimate cellular localization of the Pluronic nanocarriers depended largely on both the PEO block size and aggregation state of the copolymers. The smaller P94 unimers with an average radius of 2.1nm and the shortest PEO block mass (1100gmol(-1)) displayed the highest cellular uptake and retention. 3D tumor spheroids were used to assess the penetration capacity and toxicity potential of the nanocarriers. Results showed that cross-linked F127 micelles were more efficiently delivered across the tumor spheroids, and the penetration depth depends mostly on the transcellular transport of the carriers. The Pluronic P94-based carriers with the shortest PEO block length induced spheroid toxicity, which was significantly influenced by the spheroid cellular type.
Molecular Pharmaceutics | 2016
Alexandra Arranja; Oleksandra Ivashchenko; Antonia G. Denkova; Karolina Morawska; Sandra Van Vlierberghe; Peter Dubruel; Gilles Waton; Freek J. Beekman; François Schosseler; Eduardo Mendes
Optimal biodistribution and prolonged circulation of nanocarriers improve diagnostic and therapeutic effects of enhanced permeability and retention-based nanomedicines. Despite extensive use of Pluronics in polymer-based pharmaceuticals, the influence of different poly(ethylene oxide) (PEO) block length and aggregation state on the biodistribution of the carriers is rather unexplored. In this work, we studied these effects by evaluating the biodistribution of Pluronic unimers and cross-linked micelles with different PEO block size. In vivo biodistribution of (111)In-radiolabeled Pluronic nanocarriers was investigated in healthy mice using single photon emission computed tomography. All carriers show fast uptake in the organs from the reticuloendothelial system followed by a steady elimination through the hepatobiliary tract and renal filtration. The PEO block length affects the initial renal clearance of the compounds and the overall liver uptake. The aggregation state influences the long-term accumulation of the nanocarriers in the liver. We showed that the circulation time and elimination pathways can be tuned by varying the physicochemical properties of Pluronic copolymers. Our results can be beneficial for the design of future Pluronic-based nanomedicines.
Nanomedicine: Nanotechnology, Biology and Medicine | 2017
Costanza Santini; Alexandra Arranja; Antonia G. Denkova; François Schosseler; Karolina Morawska; Peter Dubruel; Eduardo Mendes; Marion de Jong; Monique R. Bernsen
Pluronics P94 are block-copolymer showing prolonged circulation time and tumor-cell internalization in vitro, suggesting a potential for tumor accumulation and as a drug carrier. Here we report the results of the radiolabeled-P94 unimers (P94-111In-DTPA) on tumor uptake/retention and biodistribution after intravenous and intratumoral injection to tumor-bearing mice. Intravenous administration results in a high radioactive signal in the liver; while in tumor and other healthy tissues only low levels of radioactivity could be measured. In contrast, the intratumoral injection of P94 resulted in elevated levels of radioactivity in the tumor and low levels in other organs, including the liver. Independently from the injection route, the tumor tissue presented long retention of radioactivity. The minimal involvement of off-target tissues of P94, together with the excellent tracer retention over-time in the tumor designates Pluronic P94 copolymer as a highly promising carrier for anti-tumor drugs.
Chemical Communications | 2016
Kai Zhang; Piotr J. Glazer; Laurence Jennings; Sitara Vedaraman; Sander Oldenhof; Yiming Wang; François Schosseler; Jan H. van Esch; Eduardo Mendes
A novel and facile approach to fabricating well-organized macroscopic 2D networks of cylindrical micelles is reported, based on transfer printing and thermal welding of aligned supramolecular micelles of block copolymers. This versatile approach provides a new strategy for fabricating functional 2D superstructures with a higher level of order.
Macromolecules | 1995
R. Skouri; François Schosseler; Jean-Pierre Munch; S. J. Candau
Physical Review E | 2006
François Schosseler; S. Kaloun; Mohammed Skouri; Jean-Pierre Munch