François Shareck
Institut national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Shareck.
Gene | 1991
François Shareck; Camille Roy; Yaguchi Makoto; Rolf Morosoli; Dieter Kluepfel
The entire nucleotide (nt) sequences of three genes (xlnA, xlnB and xlnC) of Streptomyces lividans encoding three distinct xylanases (Xln) have been determined. The nt sequences were confirmed by comparing the deduced amino acid (aa) sequences with the ones derived from the N-terminal aa sequences of the mature purified proteins. The N-terminus of the XlnA showed some homology with either the N-termini or the C-termini of eight other Xln and of two exo-glucanases. The N-terminus of XlnB is homologous to that of XlnC and to Xln of seven other microorganisms.
Critical Reviews in Biotechnology | 1995
Michel Gilbert; Rolf Morosoli; François Shareck; Dieter Kluepfel
Streptomycetes produce a large number of extracellular enzymes as part of their saprophytic mode of life. Their ability to synthesize enzymes as products of their primary metabolism could lead to the production of many proteins of industrial importance. The development of high-yielding expression systems for both homologous and heterologous gene products is of considerable interest. In this article, we review the current knowledge on the various factors that affect the production and secretion of proteins by streptomycetes and try to evaluate the suitability of these bacteria for the large-scale production of proteins of industrial importance.
Molecular Microbiology | 1995
Yves Hurtubise; François Shareck; Dieter Kluepfel; Rolf Morosoli
Centre de Recherche en Microbiologie Appliquée, Institut Armand‐Frappier, Université du Québec, Ville de Laval, Québec H7N 4Z3, Canada.
Applied Microbiology and Biotechnology | 1986
Dieter Kluepfel; François Shareck; Francine Mondou; Rolf Morosoli
SummaryThe production of cellulases and of xylanase by Streptomyces lividans 1326 was studied under different growth conditions. The strain grew between 18°C and 46°C and is therefore thermotolerant. Submerged cultures of the microorganism, when grown on a defined salt medium containing xylan as main carbon source, exhibited an overall cellulolytic activity as determined by the filter paper test. S. lividans produced optimal levels of extracellular β-1,4-glucan-glucanohydrolase (1 IU/ml) and large amounts of β-1,4-xylanxylanohydrolase (50 IU/ml) at 40°C. A better production of both enzymes was observed when xylan instead of cellulose was used as substrate.The stability of the enzyme was found to be significantly greater than those of the cellulases and xylanases produced by other streptomycetes. The optimal incubation temperatures for the enzyme assays were 55°C and 60°C for CM-cellulase and xylanase respectively and optimal pH values were found in the range of pH 6–7.
Journal of Biological Chemistry | 2006
Edward J. Taylor; Tracey M. Gloster; Johan P. Turkenburg; Florence Vincent; A. Marek Brzozowski; Claude Dupont; François Shareck; Maria S. J. Centeno; José A. M. Prates; Vladimír Puchart; Luís M. A. Ferreira; Carlos M. G. A. Fontes; Peter Biely; Gideon J. Davies
The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a α/β hydrolase fold with a “Ser-His-Asp” catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 Å resolution. We show, using a novel linked assay system with PNP-2-O-acetylxyloside and a β-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These “CE4” esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J. I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U. S. A., 102, 15429-15434), which form the NodB deacetylase “superfamily.”
Applied and Environmental Microbiology | 2008
Mathieu Millette; Gilbert Cornut; Claude Dupont; François Shareck; Denis Archambault; Monique Lacroix
ABSTRACT This study demonstrated the capacity of bacteriocin-producing lactic acid bacteria (LAB) to reduce intestinal colonization by vancomycin-resistant enterococci (VRE) in a mouse model. Lactococcus lactis MM19 and Pediococcus acidilactici MM33 are bacteriocin producers isolated from human feces. The bacteriocin secreted by P. acidilactici is identical to pediocin PA-1/AcH, while PCR analysis demonstrated that L. lactis harbors the nisin Z gene. LAB were acid and bile tolerant when assayed under simulated gastrointestinal conditions. A well diffusion assay using supernatants from LAB demonstrated strong activity against a clinical isolate of VRE. A first in vivo study was done using C57BL/6 mice that received daily intragastric doses of L. lactis MM19, P. acidilactici MM33, P. acidilactici MM33A (a pediocin mutant that had lost its ability to produce pediocin), or phosphate-buffered saline (PBS) for 18 days. This study showed that L. lactis and P. acidilactici MM33A increased the concentrations of total LAB and anaerobes while P. acidilactici MM33 decreased the Enterobacteriaceae populations. A second in vivo study was done using VRE-colonized mice that received the same inocula as those in the previous study for 16 days. In L. lactis-fed mice, fecal VRE levels 1.73 and 2.50 log10 CFU/g lower than those in the PBS group were observed at 1 and 3 days postinfection. In the P. acidilactici MM33-fed mice, no reduction was observed at 1 day postinfection but a reduction of 1.85 log10 CFU/g was measured at 3 days postinfection. Levels of VRE in both groups of mice treated with bacteriocin-producing LAB were undetectable at 6 days postinfection. No significant difference in mice fed the pediocin-negative strain compared to the control group was observed. This is the first demonstration that human L. lactis and P. acidilactici nisin- and pediocin-producing strains can reduce VRE intestinal colonization.
Gene | 1986
Francine Mondou; François Shareck; Rolf Morosoli; Dieter Kluepfel
The xylanase (xln) gene of Streptomyces lividans 1326 was cloned by functional complementation of the xylanase-negative and beta-1,4-glucan-glucanohydrolase-negative double mutant of S. lividans using the multicopy plasmid pIJ702. Three clones had a common 2-kb DNA fragment as determined by restriction mapping and Southern hybridization. These clones secreted a xylanase of Mr 43,000 which reacted with specific anti-xylanase antibodies and corresponded exactly to the enzyme previously isolated from the wild-type strain. The DNA fragment likely carried the full structural gene, the xln promoter and also the regulatory sequence, since the xylanase activity was inducible by xylan. Enzyme levels of up to 380 IU/ml of culture filtrate were obtained.
Gene | 1996
Michel Sylvestre; Marc Sirois; Yves Hurtubise; Janique Bergeron; Darakhshan Ahmad; François Shareck; Diane Barriault; Isabelle Guillemette; Jean Marc Juteau
In a previous work, all three components of Comamonas testosteroni B-356 biphenyl (BPH)/chlorobiphenyls (PCBs) dioxygenase (dox) have been purified and characterized. They include an iron-sulphur protein (ISPBPH) which is the terminal oxygenase composed of two subunits (encoded by bphA and bphE), a ferredoxin (FERBPH) encoded by bphF and a reductase (REDBPH) encoded by bphG. bphG Is not located in the neighbourhood of bphAEF in B-356. We are reporting the cloning of B-356-bphG and the sequencing of B-356-BPH dox genes. Comparative analysis of the genes provided genetic evidence showing that two BPH dox lineages have emerged in Gram-negative bacteria. The main features of the lineage that includes B-356 are the location of bphG outside the bph gene cluster and the structure of REDBPH which is very distinct from all other aryl dioxygenase-reductases.
Biochimica et Biophysica Acta | 1993
Peter Biely; Dieter Kluepfel; Rolf Morosoli; François Shareck
Abstract The mode of action of three genetically distinct endo-β-1,4-xylanases (EXs) of Streptomyces lividans , XlnA, XlnB and XlnC, belonging to two different xylanase families, was investigated on a variety of polysaccharide and oligosaccharide substrates. Viscosimetric measurements showed that all three enzymes have about the same endo-acting character. Occurrence of multiple pathways of substrate degradation at high concentration of β-1,4-xylooligosaccharides suggested that all three enzymes were retaining glycanases. The enzymes differed considerably in their mode of action on various heteroxylans and on rhodymenan. XlnA hydrolyzed all tested polysaccharides to a higher degree than XlnB or XlnC, through liberation of smaller hydrolysis products, both linear or branched. XlnA performed much better than XlnB or XlnC, particularly on acetylxylan, liberating large amounts of short acetylated and non-acetylated fragments. XlnB and XlnC liberated from acetylxylan only limited amounts of larger acetylated fragments. XlnA exhibited also much higher catalytic efficiency than the other two EXs on short β-1,4-xylooligosaccharides. The kinetic parameters and bond-cleavage frequencies determined for xylotriose, xylotetraose and xylopentaose using 1- 3 H-reducing-end-labelled compounds suggested that the substrate binding site of XlnA is smaller and differently organized than those in XlnB or XlnC. In contrast to XlnB and XlnC, XlnA also exhibited significant aryl-β-xylosidase activity. No distinctive catalytic properties of either XlnB or XlnC were found which were not inherent also to XlnA. High-molecular-mass EXs of the XlnA type show much greater catalytic versatility due than low-molecular-mass EXs of the XlnB or XlnC type.
Applied and Environmental Microbiology | 2001
Nelly Valkova; François Lépine; Loredana Valeanu; Maryse Dupont; Louisette Labrie; Jean-Guy Bisaillon; Réjean Beaudet; François Shareck; Richard Villemur
ABSTRACT Enterobacter cloacae strain EM was isolated from a commercial dietary mineral supplement stabilized by a mixture of methylparaben and propylparaben. It harbored a high-molecular-weight plasmid and was resistant to high concentrations of parabens. Strain EM was able to grow in liquid media containing similar amounts of parabens as found in the mineral supplement (1,700 and 180 mg of methyl and propylparaben, respectively, per liter or 11.2 and 1.0 mM) and in very high concentrations of methylparaben (3,000 mg liter−1, or 19.7 mM). This strain was able to hydrolyze approximately 500 mg of methyl-, ethyl-, or propylparaben liter−1 (3 mM) in less than 2 h in liquid culture, and the supernatant of a sonicated culture, after a 30-fold dilution, was able to hydrolyze 1,000 mg of methylparaben liter−1 (6.6 mM) in 15 min. The first step of paraben degradation was the hydrolysis of the ester bond to produce 4-hydroxybenzoic acid, followed by a decarboxylation step to produce phenol under aerobic conditions. The transformation of 4-hydroxybenzoic acid into phenol was stoichiometric. The conversion of approximately 500 mg of parabens liter−1 (3 mM) to phenol in liquid culture was completed within 5 h without significant hindrance to the growth of strain EM, while higher concentrations of parabens partially inhibited its growth.