François Van Lishout
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Van Lishout.
Annals of Human Genetics | 2011
Tom Cattaert; M. Luz Calle; Scott M. Dudek; Jestinah Mahachie John; François Van Lishout; Victor Urrea; Marylyn D. Ritchie; Kristel Van Steen
Analyzing the combined effects of genes and/or environmental factors on the development of complex diseases is a great challenge from both the statistical and computational perspective, even using a relatively small number of genetic and nongenetic exposures. Several data‐mining methods have been proposed for interaction analysis, among them, the Multifactor Dimensionality Reduction Method (MDR) has proven its utility in a variety of theoretical and practical settings. Model‐Based Multifactor Dimensionality Reduction (MB‐MDR), a relatively new MDR‐based technique that is able to unify the best of both nonparametric and parametric worlds, was developed to address some of the remaining concerns that go along with an MDR analysis. These include the restriction to univariate, dichotomous traits, the absence of flexible ways to adjust for lower order effects and important confounders, and the difficulty in highlighting epistatic effects when too many multilocus genotype cells are pooled into two new genotype groups. We investigate the empirical power of MB‐MDR to detect gene–gene interactions in the absence of any noise and in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Power is generally higher for MB‐MDR than for MDR, in particular in the presence of genetic heterogeneity, phenocopy, or low minor allele frequencies.
European Journal of Human Genetics | 2011
Jestinah Mahachie John; François Van Lishout; Kristel Van Steen
Detecting gene-gene interactions or epistasis in studies of human complex diseases is a big challenge in the area of epidemiology. To address this problem, several methods have been developed, mainly in the context of data dimensionality reduction. One of these methods, Model-Based Multifactor Dimensionality Reduction, has so far mainly been applied to case-control studies. In this study, we evaluate the power of Model-Based Multifactor Dimensionality Reduction for quantitative traits to detect gene-gene interactions (epistasis) in the presence of error-free and noisy data. Considered sources of error are genotyping errors, missing genotypes, phenotypic mixtures and genetic heterogeneity. Our simulation study encompasses a variety of settings with varying minor allele frequencies and genetic variance for different epistasis models. On each simulated data, we have performed Model-Based Multifactor Dimensionality Reduction in two ways: with and without adjustment for main effects of (known) functional SNPs. In line with binary trait counterparts, our simulations show that the power is lowest in the presence of phenotypic mixtures or genetic heterogeneity compared to scenarios with missing genotypes or genotyping errors. In addition, empirical power estimates reduce even further with main effects corrections, but at the same time, false-positive percentages are reduced as well. In conclusion, phenotypic mixtures and genetic heterogeneity remain challenging for epistasis detection, and careful thought must be given to the way important lower-order effects are accounted for in the analysis.Detecting gene–gene interactions or epistasis in studies of human complex diseases is a big challenge in the area of epidemiology. To address this problem, several methods have been developed, mainly in the context of data dimensionality reduction. One of these methods, Model-Based Multifactor Dimensionality Reduction, has so far mainly been applied to case–control studies. In this study, we evaluate the power of Model-Based Multifactor Dimensionality Reduction for quantitative traits to detect gene–gene interactions (epistasis) in the presence of error-free and noisy data. Considered sources of error are genotyping errors, missing genotypes, phenotypic mixtures and genetic heterogeneity. Our simulation study encompasses a variety of settings with varying minor allele frequencies and genetic variance for different epistasis models. On each simulated data, we have performed Model-Based Multifactor Dimensionality Reduction in two ways: with and without adjustment for main effects of (known) functional SNPs. In line with binary trait counterparts, our simulations show that the power is lowest in the presence of phenotypic mixtures or genetic heterogeneity compared to scenarios with missing genotypes or genotyping errors. In addition, empirical power estimates reduce even further with main effects corrections, but at the same time, false-positive percentages are reduced as well. In conclusion, phenotypic mixtures and genetic heterogeneity remain challenging for epistasis detection, and careful thought must be given to the way important lower-order effects are accounted for in the analysis.
BMC Bioinformatics | 2013
François Van Lishout; Jestinah Mahachie John; Elena Gusareva; Victor Urrea; Isabelle Cleynen; Emilie Théâtre; Benoit Charloteaux; Malu Calle; Louis Wehenkel; Kristel Van Steen
BackgroundResearch in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease.ResultsIn the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data.ConclusionsOur software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.
PLOS ONE | 2012
Jestinah Mahachie John; Tom Cattaert; François Van Lishout; Elena Gusareva; Kristel Van Steen
Identifying gene-gene interactions or gene-environment interactions in studies of human complex diseases remains a big challenge in genetic epidemiology. An additional challenge, often forgotten, is to account for important lower-order genetic effects. These may hamper the identification of genuine epistasis. If lower-order genetic effects contribute to the genetic variance of a trait, identified statistical interactions may simply be due to a signal boost of these effects. In this study, we restrict attention to quantitative traits and bi-allelic SNPs as genetic markers. Moreover, our interaction study focuses on 2-way SNP-SNP interactions. Via simulations, we assess the performance of different corrective measures for lower-order genetic effects in Model-Based Multifactor Dimensionality Reduction epistasis detection, using additive and co-dominant coding schemes. Performance is evaluated in terms of power and familywise error rate. Our simulations indicate that empirical power estimates are reduced with correction of lower-order effects, likewise familywise error rates. Easy-to-use automatic SNP selection procedures, SNP selection based on “top” findings, or SNP selection based on p-value criterion for interesting main effects result in reduced power but also almost zero false positive rates. Always accounting for main effects in the SNP-SNP pair under investigation during Model-Based Multifactor Dimensionality Reduction analysis adequately controls false positive epistasis findings. This is particularly true when adopting a co-dominant corrective coding scheme. In conclusion, automatic search procedures to identify lower-order effects to correct for during epistasis screening should be avoided. The same is true for procedures that adjust for lower-order effects prior to Model-Based Multifactor Dimensionality Reduction and involve using residuals as the new trait. We advocate using “on-the-fly” lower-order effects adjusting when screening for SNP-SNP interactions using Model-Based Multifactor Dimensionality Reduction analysis.
Biodata Mining | 2013
Jestinah Mahachie John; François Van Lishout; Elena Gusareva; Kristel Van Steen
BackgroundApplying a statistical method implies identifying underlying (model) assumptions and checking their validity in the particular context. One of these contexts is association modeling for epistasis detection. Here, depending on the technique used, violation of model assumptions may result in increased type I error, power loss, or biased parameter estimates. Remedial measures for violated underlying conditions or assumptions include data transformation or selecting a more relaxed modeling or testing strategy. Model-Based Multifactor Dimensionality Reduction (MB-MDR) for epistasis detection relies on association testing between a trait and a factor consisting of multilocus genotype information. For quantitative traits, the framework is essentially Analysis of Variance (ANOVA) that decomposes the variability in the trait amongst the different factors. In this study, we assess through simulations, the cumulative effect of deviations from normality and homoscedasticity on the overall performance of quantitative Model-Based Multifactor Dimensionality Reduction (MB-MDR) to detect 2-locus epistasis signals in the absence of main effects.MethodologyOur simulation study focuses on pure epistasis models with varying degrees of genetic influence on a quantitative trait. Conditional on a multilocus genotype, we consider quantitative trait distributions that are normal, chi-square or Student’s t with constant or non-constant phenotypic variances. All data are analyzed with MB-MDR using the built-in Student’s t-test for association, as well as a novel MB-MDR implementation based on Welch’s t-test. Traits are either left untransformed or are transformed into new traits via logarithmic, standardization or rank-based transformations, prior to MB-MDR modeling.ResultsOur simulation results show that MB-MDR controls type I error and false positive rates irrespective of the association test considered. Empirically-based MB-MDR power estimates for MB-MDR with Welch’s t-tests are generally lower than those for MB-MDR with Student’s t-tests. Trait transformations involving ranks tend to lead to increased power compared to the other considered data transformations.ConclusionsWhen performing MB-MDR screening for gene-gene interactions with quantitative traits, we recommend to first rank-transform traits to normality and then to apply MB-MDR modeling with Student’s t-tests as internal tests for association.
BMC Proceedings | 2011
Jestinah Mahachie John; Tom Cattaert; Lizzy De Lobel; François Van Lishout; Alain Empain; Kristel Van Steen
In the quest for the missing heritability of most complex diseases, rare variants have received increased attention. Advances in large-scale sequencing have led to a shift from the common disease/common variant hypothesis to the common disease/rare variant hypothesis or have at least reopened the debate about the relevance and importance of rare variants for gene discoveries. The investigation of modeling and testing approaches to identify significant disease/rare variant associations is in full motion. New methods to better deal with parameter estimation instabilities, convergence problems, or multiple testing corrections in the presence of rare variants or effect modifiers of rare variants are in their infancy. Using a recently developed semiparametric strategy to detect causal variants, we investigate the performance of the model-based multifactor dimensionality reduction (MB-MDR) technique in terms of power and family-wise error rate (FWER) control in the presence of rare variants, using population-based and family-based data (FAM-MDR). We compare family-based results obtained from MB-MDR analyses to screening findings from a quantitative trait Pedigree-based association test (PBAT). Population-based data were further examined using penalized regression models. We restrict attention to all available single-nucleotide polymorphisms on chromosome 4 and consider Q1 as the outcome of interest. The considered family-based methods identified marker C4S4935 in the VEGFC gene with estimated power not exceeding 0.35 (FAM-MDR), when FWER was kept under control. The considered population-based methods gave rise to highly inflated FWERs (up to 90% for PBAT screening).
Biodata Mining | 2015
François Van Lishout; Francesco Gadaleta; Jason H. Moore; Louis Wehenkel; Kristel Van Steen
BackgroundThe purpose of the MaxT algorithm is to provide a significance test algorithm that controls the family-wise error rate (FWER) during simultaneous hypothesis testing. However, the requirements in terms of computing time and memory of this procedure are proportional to the number of investigated hypotheses. The memory issue has been solved in 2013 by Van Lishout’s implementation of MaxT, which makes the memory usage independent from the size of the dataset. This algorithm is implemented in MBMDR-3.0.3, a software that is able to identify genetic interactions, for a variety of SNP-SNP based epistasis models effectively. On the other hand, that implementation turned out to be less suitable for genome-wide interaction analysis studies, due to the prohibitive computational burden.ResultsIn this work we introduce gammaMAXT, a novel implementation of the maxT algorithm for multiple testing correction. The algorithm was implemented in software MBMDR-4.2.2, as part of the MB-MDR framework to screen for SNP-SNP, SNP-environment or SNP-SNP-environment interactions at a genome-wide level. We show that, in the absence of interaction effects, test-statistics produced by the MB-MDR methodology follow a mixture distribution with a point mass at zero and a shifted gamma distribution for the top 10 % of the strictly positive values. We show that the gammaMAXT algorithm has a power comparable to MaxT and maintains FWER, but requires less computational resources and time. We analyze a dataset composed of 106 SNPs and 1000 individuals within one day on a 256-core computer cluster. The same analysis would take about 104 times longer with MBMDR-3.0.3.ConclusionsThese results are promising for future GWAIs. However, the proposed gammaMAXT algorithm offers a general significance assessment and multiple testing approach, applicable to any context that requires performing hundreds of thousands of tests. It offers new perspectives for fast and efficient permutation-based significance assessment in large-scale (integrated) omics studies.
Human Heredity | 2015
Ramouna Fouladi; Kyrylo Bessonov; François Van Lishout; Kristel Van Steen
Genome-wide association studies have revealed a vast amount of common loci associated to human complex diseases. Still, a large proportion of heritability remains unexplained. The extent to which rare genetic variants (RVs) are able to explain a relevant portion of the genetic heritability for complex traits leaves room for several debates and paves the way to the collection of RV databases and the development of novel analytic tools to analyze these. To date, several statistical methods have been proposed to uncover the association of RVs with complex diseases, but none of them is the clear winner in all possible scenarios of study design and assumed underlying disease model. The latter may involve differences in the distributions of effect sizes, proportions of causal variants, and ratios of protective to deleterious variants at distinct regions throughout the genome. Therefore, there is a need for robust scalable methods with acceptable overall performance in terms of power and type I error under various realistic scenarios. In this paper, we propose a novel RV association analysis strategy, which satisfies several of the desired properties that a RV analysis tool should exhibit.
Annals of Human Genetics | 2011
Tom Cattaert; M. Luz Calle; Scott M. Dudek; Jestinah Mahachie John; François Van Lishout; Victor Urrea; Marylyn D. Ritchie; Kristel Van Steen
Analyzing the combined effects of genes and/or environmental factors on the development of complex diseases is a great challenge from both the statistical and computational perspective, even using a relatively small number of genetic and nongenetic exposures. Several data‐mining methods have been proposed for interaction analysis, among them, the Multifactor Dimensionality Reduction Method (MDR) has proven its utility in a variety of theoretical and practical settings. Model‐Based Multifactor Dimensionality Reduction (MB‐MDR), a relatively new MDR‐based technique that is able to unify the best of both nonparametric and parametric worlds, was developed to address some of the remaining concerns that go along with an MDR analysis. These include the restriction to univariate, dichotomous traits, the absence of flexible ways to adjust for lower order effects and important confounders, and the difficulty in highlighting epistatic effects when too many multilocus genotype cells are pooled into two new genotype groups. We investigate the empirical power of MB‐MDR to detect gene–gene interactions in the absence of any noise and in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Power is generally higher for MB‐MDR than for MDR, in particular in the presence of genetic heterogeneity, phenocopy, or low minor allele frequencies.
Human Heredity | 2015
Sarah A. Pendergrass; Anurag Verma; Anna Okula; Molly A. Hall; Dana C. Crawford; Marylyn D. Ritchie; Emmanuelle Génin; Marcella Devoto; Hongzhe Li; Jessie Jeng; Qian Wu; Andreas Ziegler; Henry Mwambi; Inke R. König; Silvia Pineda; Paulina Gomez-Rubio; Antonio Picornell; Kyrylo Bessonov; Mirari Marquez; Manolis Kogevinas; Francisco X. Real; Kristel Van Steen; Núria Malats; Robert Goodloe; Eric Farber-Eger; Jonathan Boston; Jonathan L. Haines; William S. Bush; Cyprien Mbogning; Hervé Perdry
28 43rd European Mathematical Genetics Meeting (EMGM) 2015 April 16–17, 2015, Brest, France