Francois Vigneault
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francois Vigneault.
Cell Stem Cell | 2010
Yuin-Han Loh; Odelya Hartung; Hu Li; Chunguang Guo; Julie M. Sahalie; Philip D. Manos; Achia Urbach; Garrett C. Heffner; Marica Grskovic; Francois Vigneault; M. William Lensch; In-Hyun Park; Suneet Agarwal; George M. Church; James J. Collins; Stefan Irion; George Q. Daley
A manuscript has appeared online demonstrating isolation of iPSCs from peripheral blood, including a single line that showed evidence for both TCR-β and TCR-γ rearrangement by PCR (Kunisato, A., Wakatsuki, M., Shinba, H., Ota, T., Ishida, I., and Nagao, K. [2010]. Direct generation of induced pluripotent stem cells from human non-mobilized blood. Stem Cells Dev., in press. Published online May 24, 2010. 10.1089/scd.2010.0063).
Science Translational Medicine | 2014
Joel N. H. Stern; Gur Yaari; Jason A. Vander Heiden; George M. Church; William Donahue; Rogier Q. Hintzen; Anita Huttner; Jon D. Laman; Rashed M. Nagra; Alyssa Nylander; David Pitt; Sriram Ramanan; Bilal A. Siddiqui; Francois Vigneault; Steven H. Kleinstein; David A. Hafler; Kevin C. O'Connor
In multiple sclerosis patients, B cells mature in the draining cervical lymph nodes before trafficking across the blood-brain barrier. B Cells Flip the Switch for MS B cells in multiple sclerosis (MS) patients may mature outside the central nervous system (CNS). Two complementary studies report that B cells found outside the CNS—in peripheral blood and draining cervical lymph nodes (CLNs)—share antigen specificity with intrathecal B cell repertoires. In patients with MS, immune cells attack the CNS; however, it remains unclear whether these cells mature in the CNS or traffic to the CNS as mature cells. Using paired tissues and high-throughput sequencing, Stern et al. found that clonally expanded B cells are found in both the CNS and CLNs but that founding members were more often found in the draining CLNs. Palanichamy et al. extend these findings by reporting a peripheral blood/CNS axis of mature B cells that have undergone class switch. These data support the therapeutic use of monoclonal antibodies that prevent lymphocytes from crossing the blood-brain barrier or induce peripheral B cell depletion in MS patients. Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by autoimmune-mediated demyelination and neurodegeneration. The CNS of patients with MS harbors expanded clones of antigen-experienced B cells that reside in distinct compartments including the meninges, cerebrospinal fluid (CSF), and parenchyma. It is not understood whether this immune infiltrate initiates its development in the CNS or in peripheral tissues. B cells in the CSF can exchange with those in peripheral blood, implying that CNS B cells may have access to lymphoid tissue that may be the specific compartment(s) in which CNS-resident B cells encounter antigen and experience affinity maturation. Paired tissues were used to determine whether the B cells that populate the CNS mature in the draining cervical lymph nodes (CLNs). High-throughput sequencing of the antibody repertoire demonstrated that clonally expanded B cells were present in both compartments. Founding members of clones were more often found in the draining CLNs. More mature clonal members derived from these founders were observed in the draining CLNs and also in the CNS, including lesions. These data provide new evidence that B cells traffic freely across the tissue barrier, with the majority of B cell maturation occurring outside of the CNS in the secondary lymphoid tissue. Our study may aid in further defining the mechanisms of immunomodulatory therapies that either deplete circulating B cells or affect the intrathecal B cell compartment by inhibiting lymphocyte transmigration into the CNS.
Genome Research | 2012
Shahar Alon; Eyal Mor; Francois Vigneault; George M. Church; Franco Locatelli; Federica Galeano; Angela Gallo; Noam Shomron; Eli Eisenberg
Adenosine-to-inosine (A-to-I) editing modifies RNA transcripts from their genomic blueprint. A prerequisite for this process is a double-stranded RNA (dsRNA) structure. Such dsRNAs are formed as part of the microRNA (miRNA) maturation process, and it is therefore expected that miRNAs are affected by A-to-I editing. Editing of miRNAs has the potential to add another layer of complexity to gene regulation pathways, especially if editing occurs within the miRNA-mRNA recognition site. Thus, it is of interest to study the extent of this phenomenon. Current reports in the literature disagree on its extent; while some reports claim that it may be widespread, others deem the reported events as rare. Utilizing a next-generation sequencing (NGS) approach supplemented by an extensive bioinformatic analysis, we were able to systematically identify A-to-I editing events in mature miRNAs derived from human brain tissues. Our algorithm successfully identified many of the known editing sites in mature miRNAs and revealed 17 novel human sites, 12 of which are in the recognition sites of the miRNAs. We confirmed most of the editing events using in vitro ADAR overexpression assays. The editing efficiency of most sites identified is very low. Similar results are obtained for publicly available data sets of mouse brain-regions tissues. Thus, we find that A-to-I editing does alter several miRNAs, but it is not widespread.
Genome Research | 2011
Shahar Alon; Francois Vigneault; Seda Eminaga; Danos C. Christodoulou; Jonathan G. Seidman; George M. Church; Eli Eisenberg
Second-generation sequencing is gradually becoming the method of choice for miRNA detection and expression profiling. Given the relatively small number of miRNAs and improvements in DNA sequencing technology, studying miRNA expression profiles of multiple samples in a single flow cell lane becomes feasible. Multiplexing strategies require marking each miRNA library with a DNA barcode. Here we report that barcodes introduced through adapter ligation confer significant bias on miRNA expression profiles. This bias is much higher than the expected Poisson noise and masks significant expression differences between miRNA libraries. This bias can be eliminated by adding barcodes during PCR amplification of libraries. The accuracy of miRNA expression measurement in multiplexed experiments becomes a function of sample number.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Uri Laserson; Francois Vigneault; Daniel Gadala-Maria; Gur Yaari; Mohamed Uduman; Jason A. Vander Heiden; William Kelton; Sang Taek Jung; Yi Liu; Jonathan Laserson; Raj Chari; Je-Hyuk Lee; Ido Bachelet; Brendan Hickey; Erez Lieberman-Aiden; Bozena Hanczaruk; Birgitte B. Simen; Michael Egholm; Daphne Koller; George Georgiou; Steven H. Kleinstein; George M. Church
Significance The immune system must constantly adapt to combat infections and other challenges. This is accomplished by continuously evolving the antibody repertoire, and by maintaining memory of prior challenges. By using next-generation DNA sequencing technology, we have examined the shear amount of antibody made by individuals during a flu vaccination trial. We demonstrate one of the first characterizations of the fast antibody dynamics through time in multiple individuals responding to an immune challenge. The adaptive immune system confers protection by generating a diverse repertoire of antibody receptors that are rapidly expanded and contracted in response to specific targets. Next-generation DNA sequencing now provides the opportunity to survey this complex and vast repertoire. In the present work, we describe a set of tools for the analysis of antibody repertoires and their application to elucidating the dynamics of the response to viral vaccination in human volunteers. By analyzing data from 38 separate blood samples across 2 y, we found that the use of the germ-line library of V and J segments is conserved between individuals over time. Surprisingly, there appeared to be no correlation between the use level of a particular VJ combination and degree of expansion. We found the antibody RNA repertoire in each volunteer to be highly dynamic, with each individual displaying qualitatively different response dynamics. By using combinatorial phage display, we screened selected VH genes paired with their corresponding VL library for affinity against the vaccine antigens. Altogether, this work presents an additional set of tools for profiling the human antibody repertoire and demonstrates characterization of the fast repertoire dynamics through time in multiple individuals responding to an immune challenge.
Bioinformatics | 2014
Jason A. Vander Heiden; Gur Yaari; Mohamed Uduman; Joel N. H. Stern; Kevin C. O’Connor; David A. Hafler; Francois Vigneault; Steven H. Kleinstein
UNLABELLED Driven by dramatic technological improvements, large-scale characterization of lymphocyte receptor repertoires via high-throughput sequencing is now feasible. Although promising, the high germline and somatic diversity, especially of B-cell immunoglobulin repertoires, presents challenges for analysis requiring the development of specialized computational pipelines. We developed the REpertoire Sequencing TOolkit (pRESTO) for processing reads from high-throughput lymphocyte receptor studies. pRESTO processes raw sequences to produce error-corrected, sorted and annotated sequence sets, along with a wealth of metrics at each step. The toolkit supports multiplexed primer pools, single- or paired-end reads and emerging technologies that use single-molecule identifiers. pRESTO has been tested on data generated from Roche and Illumina platforms. It has a built-in capacity to parallelize the work between available processors and is able to efficiently process millions of sequences generated by typical high-throughput projects. AVAILABILITY AND IMPLEMENTATION pRESTO is freely available for academic use. The software package and detailed tutorials may be downloaded from http://clip.med.yale.edu/presto.
Frontiers in Immunology | 2013
Gur Yaari; Jason A. Vander Heiden; Mohamed Uduman; Daniel Gadala-Maria; Namita T. Gupta; Joel N. H. Stern; Kevin C. O’Connor; David A. Hafler; Uri Laserson; Francois Vigneault; Steven H. Kleinstein
Analyses of somatic hypermutation (SHM) patterns in B cell immunoglobulin (Ig) sequences contribute to our basic understanding of adaptive immunity, and have broad applications not only for understanding the immune response to pathogens, but also to determining the role of SHM in autoimmunity and B cell cancers. Although stochastic, SHM displays intrinsic biases that can confound statistical analysis, especially when combined with the particular codon usage and base composition in Ig sequences. Analysis of B cell clonal expansion, diversification, and selection processes thus critically depends on an accurate background model for SHM micro-sequence targeting (i.e., hot/cold-spots) and nucleotide substitution. Existing models are based on small numbers of sequences/mutations, in part because they depend on data from non-coding regions or non-functional sequences to remove the confounding influences of selection. Here, we combine high-throughput Ig sequencing with new computational analysis methods to produce improved models of SHM targeting and substitution that are based only on synonymous mutations, and are thus independent of selection. The resulting “S5F” models are based on 806,860 Synonymous mutations in 5-mer motifs from 1,145,182 Functional sequences and account for dependencies on the adjacent four nucleotides (two bases upstream and downstream of the mutation). The estimated profiles can explain almost half of the variance in observed mutation patterns, and clearly show that both mutation targeting and substitution are significantly influenced by neighboring bases. While mutability and substitution profiles were highly conserved across individuals, the variability across motifs was found to be much larger than previously estimated. The model and method source code are made available at http://clip.med.yale.edu/SHM
Journal of Virology | 2011
Francois Vigneault; Matthew Woods; Maria J. Buzon; Chun Li; Florencia Pereyra; Seth D. Crosby; Jennifer Rychert; George M. Church; Javier Martinez-Picado; Eric S. Rosenberg; Amalio Telenti; Xu G. Yu; Mathias Lichterfeld
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) elite controllers maintain undetectable levels of viral replication in the absence of antiretroviral therapy (ART), but their underlying immunological and virological characteristics may vary. Here, we used a whole-genome transcriptional profiling approach to characterize gene expression signatures of CD4 T cells from an unselected cohort of elite controllers. The transcriptional profiles for the majority of elite controllers were similar to those of ART-treated patients but different from those of HIV-1-negative persons. Yet, a smaller proportion of elite controllers showed an alternative gene expression pattern that was indistinguishable from that of HIV-1-negative persons but different from that of highly active antiretroviral therapy (HAART)-treated individuals. Elite controllers with the latter gene expression signature had significantly higher CD4 T cell counts and lower levels of HIV-1-specific CD8+ T cell responses but did not significantly differ from other elite controllers in terms of HLA class I alleles, HIV-1 viral loads determined by ultrasensitive single-copy PCR assays, or chemokine receptor polymorphisms. Thus, these data identify a specific subgroup of elite controllers whose immunological and gene expression characteristics approximate those of HIV-1-negative persons.
Immunity | 2015
Roberto Di Niro; Seung Joo Lee; Jason A. Vander Heiden; Rebecca A. Elsner; Nikita Trivedi; Jason M. Bannock; Namita T. Gupta; Steven H. Kleinstein; Francois Vigneault; Tamara J. Gilbert; Eric Meffre; Stephen J. McSorley; Mark J. Shlomchik
The B cell response to Salmonella typhimurium (STm) occurs massively at extrafollicular sites, without notable germinal centers (GCs). Little is known in terms of its specificity. To expand the knowledge of antigen targets, we screened plasmablast (PB)-derived monoclonal antibodies (mAbs) for Salmonella specificity, using ELISA, flow cytometry, and antigen microarray. Only a small fraction (0.5%-2%) of the response appeared to be Salmonella-specific. Yet, infection of mice with limited B cell receptor (BCR) repertoires impaired the response, suggesting that BCR specificity was important. We showed, using laser microdissection, that somatic hypermutation (SHM) occurred efficiently at extrafollicular sites leading to affinity maturation that in turn led to detectable STm Ag-binding. These results suggest a revised vision of how clonal selection and affinity maturation operate in response to Salmonella. Clonal selection initially is promiscuous, activating cells with virtually undetectable affinity, yet SHM and selection occur during the extrafollicular response yielding higher affinity, detectable antibodies.
Nature Methods | 2008
Francois Vigneault; A. Michael Sismour; George M. Church
Here we report a highly efficient and simplified strategy to preadenylate bar-coded oligonucleotides designed for microRNA (miRNA) capture and multiplex analysis. Using this approach, we enzymatically preadenylated bar-coded oligonucleotides with high efficiency when compared to the chemical method currently used by miRNA investigators. As a case study, we used these oligonucleotides in an ATP-independent ligation to miRNAs, suggesting the utility of our method in end-capture protocols and high-throughput sequencing applications.