Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Waldner is active.

Publication


Featured researches published by François Waldner.


Remote Sensing | 2015

Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps

François Waldner; Steffen Fritz; Antonio Di Gregorio; Pierre Defourny

Timely and accurate information on the global cropland extent is critical for applications in the fields of food security, agricultural monitoring, water management, land-use change modeling and Earth system modeling. On the one hand, it gives detailed location information on where to analyze satellite image time series to assess crop condition. On the other hand, it isolates the agriculture component to focus food security monitoring on agriculture and to assess the potential impacts of climate change on agricultural lands. The cropland class is often poorly captured in global land cover products due to its dynamic nature and the large variety of agro-systems. The overall objective was to evaluate the current availability of cropland datasets in order to propose a strategic planning and effort distribution for future cropland mapping activities and, therefore, to maximize their impact. Following a very comprehensive identification and collection of national to global land cover maps, a multi-criteria analysis was designed at the country level to identify the priority areas for cropland mapping. As a result, the analysis highlighted priority regions, such as Western Africa, Ethiopia, Madagascar and Southeast Asia, for the remote sensing community to focus its efforts. A Unified Cropland Layer at 250 m for the year 2014 was produced combining the fittest products. It was assessed using global validation datasets and yields an overall accuracy ranging from 82%–94%. Masking cropland areas with a global forest map reduced the commission errors from 46% down to 26%. Compared to the GLC-Share and the International Institute for Applied Systems Analysis-International Food Policy Research Institute (IIASA-IFPRI) cropland maps, significant spatial disagreements were found, which might be attributed to discrepancies in the cropland definition. This advocates for a shared definition of cropland, as well as global validation datasets relevant for the agriculture class in order to systematically assess existing and future cropland maps.


Remote Sensing | 2015

An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series

Nicolas Matton; Guadalupe Sepulcre Canto; François Waldner; Silvia Valero; David Morin; Jordi Inglada; Marcela Arias; Sophie Bontemps; Benjamin Koetz; Pierre Defourny

Cropland mapping relies heavily on field data for algorithm calibration, making it, in many cases, applicable only at the field campaign scale. While the recently launched Sentinel-2 satellite will be able to deliver time series over large regions, it will not really be compatible with the current mapping approach or the available in situ data. This research introduces a generic methodology for mapping annual cropland along the season at high spatial resolution with the use of globally available baseline land cover and no need for field data. The methodology is based on cropland-specific temporal features, which are able to cope with the diversity of agricultural systems, prior information from which mislabeled pixels have been removed and a cost-effective classifier. Thanks to the JECAM network, eight sites across the world were selected for global cropland mapping benchmarking. Accurate cropland maps were produced at the end of the season, showing an overall accuracy of more than 85%. Early cropland maps were also obtained at three-month intervals after the beginning of the growing season, and these showed reasonable accuracy at the three-month stage (>70% overall accuracy) and progressive improvement along the season. The trimming-based method was found to be key for using spatially coarse baseline land cover information and, thus, avoiding costly field campaigns for prior information retrieval. The accuracy and timeliness of the proposed approach shows that it has substantial potential for operational agriculture monitoring programs.


Remote Sensing | 2016

Sentinel-2’s Potential for Sub-Pixel Landscape Feature Detection

Julien Radoux; Guillaume Chomé; Damien Christophe Jacques; François Waldner; Nicolas Bellemans; Nicolas Matton; Céline Lamarche; Raphaël d'Andrimont; Pierre Defourny

Land cover and land use maps derived from satellite remote sensing imagery are critical to support biodiversity and conservation, especially over large areas. With its 10 m to 20 m spatial resolution, Sentinel-2 is a promising sensor for the detection of a variety of landscape features of ecological relevance. However, many components of the ecological network are still smaller than the 10 m pixel, i.e., they are sub-pixel targets that stretch the sensor’s resolution to its limit. This paper proposes a framework to empirically estimate the minimum object size for an accurate detection of a set of structuring landscape foreground/background pairs. The developed method combines a spectral separability analysis and an empirical point spread function estimation for Sentinel-2. The same approach was also applied to Landsat-8 and SPOT-5 (Take 5), which can be considered as similar in terms of spectral definition and spatial resolution, respectively. Results show that Sentinel-2 performs consistently on both aspects. A large number of indices have been tested along with the individual spectral bands and target discrimination was possible in all but one case. Overall, results for Sentinel-2 highlight the critical importance of a good compromise between the spatial and spectral resolution. For instance, the Sentinel-2 roads detection limit was of 3 m and small water bodies are separable with a diameter larger than 11 m. In addition, the analysis of spectral mixtures draws attention to the uneven sensitivity of a variety of spectral indices. The proposed framework could be implemented to assess the fitness for purpose of future sensors within a large range of applications.


Remote Sensing | 2016

Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m

Marie-Julie Lambert; François Waldner; Pierre Defourny

Early warning systems for food security require accurate and up-to-date information on the location of major crops in order to prevent hazards. A recent systematic analysis of existing cropland maps identified priority areas for cropland mapping and highlighted a major need for the Sahelian and Sudanian agrosystems. This paper proposes a knowledge-based approach to map cropland in the Sahelian and Sudanian agrosystems that benefits from the 100-m spatial resolution of the recent PROBA-V sensor. The methodology uses five temporal features characterizing crop development throughout the vegetative season to optimize cropland discrimination. A feature importance analysis validates the efficiency of using a diversity of temporal features. The fully-automated method offers the first cropland map at 100-m using the PROBA-V sensor with an overall accuracy of 84% and an F-score for the cropland class of 74%. The improvements observed compared to existing cropland products are related to the hectometric resolution, to the methodology and to the quality of the labeling layer from which reliable training samples were automatically extracted. Classification errors are mainly explained by data availability and landscape fragmentation. Further improvements are expected with the upcoming enhanced cloud screening of the PROBA-V sensor.


Journal of remote sensing | 2016

Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

François Waldner; Diego de Abelleyra; Santiago R. Verón; Miao Zhang; Bingfang Wu; Dmitry Plotnikov; Sergey Bartalev; Mykola Lavreniuk; Sergii Skakun; Nataliia Kussul; Guerric Le Maire; Ian Jarvis; Pierre Defourny

ABSTRACT Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.


Remote Sensing | 2015

Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series

François Waldner; Marie-Julie Lambert; Wenjuan Li; Marie Weiss; V. Demarez; David Morin; Claire Marais-Sicre; Olivier Hagolle; Frédéric Baret; Pierre Defourny

With the ever-increasing number of satellites and the availability of data free of charge, the integration of multi-sensor images in coherent time series offers new opportunities for land cover and crop type classification. This article investigates the potential of structural biophysical variables as common parameters to consistently combine multi-sensor time series and to exploit them for land/crop cover classification. Artificial neural networks were trained based on a radiative transfer model in order to retrieve high resolution LAI, FAPAR and FCOVER from Landsat-8 and SPOT-4. The correlation coefficients between field measurements and the retrieved biophysical variables were 0.83, 0.85 and 0.79 for LAI, FAPAR and FCOVER, respectively. The retrieved biophysical variables’ time series displayed consistent average temporal trajectories, even though the class variability and signal-to-noise ratio increased compared to NDVI. Six random forest classifiers were trained and applied along the season with different inputs: spectral bands, NDVI, as well as FAPAR, LAI and FCOVER, separately and jointly. Classifications with structural biophysical variables reached end-of-season overall accuracies ranging from 73%–76% when used alone and 77% when used jointly. This corresponds to 90% and 95% of the accuracy level achieved with the spectral bands and NDVI. FCOVER appears to be the most promising biophysical variable for classification. When assuming that the cropland extent is known, crop type classification reaches 89% with spectral information, 87% with the NDVI and 81%–84% with biophysical variables.


Remote Sensing | 2015

A Generic Algorithm to Estimate LAI, FAPAR and FCOVER Variables from SPOT4_HRVIR and Landsat Sensors: Evaluation of the Consistency and Comparison with Ground Measurements

Wenjuan Li; Marie Weiss; François Waldner; Pierre Defourny; V. Demarez; David Morin; Olivier Hagolle; Frédéric Baret

The leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by green vegetation (FAPAR) are essential climatic variables in surface process models. FCOVER is also important to separate vegetation and soil for energy balance processes. Currently, several LAI, FAPAR and FCOVER satellite products are derived moderate to coarse spatial resolution. The launch of Sentinel-2 in 2015 will provide data at decametric resolution with a high revisit frequency to allow quantifying the canopy functioning at the local to regional scales. The aim of this study is thus to evaluate the performances of a neural network based algorithm to derive LAI, FAPAR and FCOVER products at decametric spatial resolution and high temporal sampling. The algorithm is generic, i.e., it is applied without any knowledge of the landcover. A time series of high spatial resolution SPOT4_HRVIR (16 scenes) and Landsat 8 (18 scenes) images acquired in 2013 over the France southwestern site were used to generate the LAI, FAPAR and FCOVER products. For each sensor and each biophysical variable, a neural network was first trained over PROSPECT+SAIL radiative transfer model simulations of top of canopy reflectance data for green, red, near-infra red and short wave infra-red bands. Our results show a good spatial and temporal consistency between the variables derived from both sensors: almost half the pixels show an absolute difference between SPOT and LANDSAT estimates of lower that 0.5 unit for LAI, and 0.05 unit for FAPAR and FCOVER. Finally, downward-looking digital hemispherical cameras were completed over the main land cover types to validate the accuracy of the products. Results show that the derived products are strongly correlated with the field measurements (R2 > 0.79), corresponding to a RMSE = 0.49 for LAI, RMSE = 0.10 (RMSE = 0.12) for black-sky (white sky) FAPAR and RMSE = 0.15 for FCOVER. It is concluded that the proposed generic algorithm provides a good basis to monitor the seasonal variation of the vegetation biophysical variables for important crops at decametric resolution.


F1000Research | 2017

A multi-disciplinary perspective on emergent and future innovations in peer review

Jonathan P. Tennant; Jonathan M. Dugan; Daniel Graziotin; Damien Christophe Jacques; François Waldner; Daniel Mietchen; Yehia Elkhatib; Lauren Brittany Collister; Christina K. Pikas; Tom Crick; Paola Masuzzo; Anthony Caravaggi; Devin R. Berg; Kyle E. Niemeyer; Tony Ross-Hellauer; Sara Mannheimer; Lillian Rigling; Daniel S. Katz; Bastian Greshake Tzovaras; Josmel Pacheco-Mendoza; Nazeefa Fatima; Marta Poblet; Marios Isaakidis; Dasapta Erwin Irawan; Sébastien Renaut; Christopher R. Madan; Lisa Matthias; Jesper Nørgaard Kjær; Daniel Paul O'Donnell; Cameron Neylon

Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of Web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform current models while avoiding as many of the biases of existing systems as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that, at least partially, resolves many of the technical and social issues associated with peer review, and can potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments.


Remote Sensing | 2015

A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS

Cécile Renier; François Waldner; Damien Christophe Jacques; Mohamed Abdallahi Babah Ebbe; Keith Cressman; Pierre Defourny

Desert locusts (Schistocerca gregaria) represent a major threat for agro-pastoral resources and food security over almost 30 million km2 from northern Africa to the Arabian peninsula and India. Given the differential food preferences of this insect pest and the extent and remoteness of the their distribution area, near-real-time remotely-sensed information on potential habitats support control operations by narrowing down field surveys to areas favorable for their development and prone to gregarization and outbreaks. The development of dynamic greenness maps, which detect the onset of photosynthetic vegetation, allowed national control centers to identify potential habitats to survey, as locusts prefer green and fresh vegetation. Their successful integration into the daily control operations led to a new need: the near-real-time identification of the onset of dryness, a synonym for the loss of habitat attractiveness, likely to be abandoned by locusts. The timely availability of this information would enable control centers to focus their surveys on areas more prone to gregarization, leading to more efficiency in the allocation of resources and in decision making. In this context, this work developed an original method to detect in near-real-time the onset of vegetation senescence. The design of the detection relies on the temporal behavior of two indices: the Normalized Difference Vegetation Index, depending on the green vegetation, and the Normalized Difference Tillage Index, sensitive to both green and dry vegetation. The method is demonstrated in Mauritania, an ever-affected country, with 10-day MODIS mean composites for the years 2010 and 2011. The discrimination performance of three classes (“growth”, “density reduction” and “drying”) were analyzed for three classification methods: maximum likelihood (61.4% of overall accuracy), decision tree (71.5%) and support vector machine (72.3%). The classification accuracy is heterogeneous in both time and space and is affected by several factors, such as vegetation density, the north-south climatic gradient and the relief. Smoothing the vegetation time series resulted in an increase of the overall accuracy of about 5% at the expense of a loss in timeliness of ten days. To simulate near-real-time monitoring conditions, the decision tree was applied to the decade of 2010. Overall, the seasonal vegetation cycle appeared clear and consistent. The results obtained pave the way for an operational implementation of the senescence dynamic mapping and, consequently, to further strengthen the capacity of the locust control management.


ISPRS international journal of geo-information | 2015

Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment

François Waldner; Mohamed Abdallahi Babah Ebbe; Keith Cressman; Pierre Defourny

Desert locust swarms intermittently damage crops and pastures in sixty countries from Africa to western Asia, threatening the food security of 10% of the world’s population. During the 20th century, desert locust control operations began organizing, and nowadays, they are coordinated by the Food and Agriculture Organization (FAO), which promotes a preventative strategy based on early warning and rapid response. This strategy implies a constant monitoring of the populations and of the ecological conditions favorable to their development. Satellite remote sensing can provide a near real-time monitoring of these conditions at the continental scale. Thus, the desert locust control community needs a reliable detection of green vegetation in arid and semi-arid areas as an indicator of potential desert locust habitat. To meet this need, a colorimetric transformation has been developed on both SPOT-VEGETATION and MODIS data to produce dynamic greenness maps. After their integration in the daily locust control activities, this research aimed at assessing those dynamic greenness maps from the producers’ and the users’ points of view. Eight confusion matrices and Pareto boundaries were derived from high resolution reference maps representative of the temporal and spatial diversity of Mauritanian habitats. The dynamic greenness maps were found to be accurate in summer breeding areas (F-score = 0.64–0.87), but accuracy dropped in winter breeding areas (F-score = 0.28–0.40). Accuracy is related to landscape fragmentation (R2 = 0.9): the current spatial resolution remains too coarse to resolve complex fragmented patterns and accounts for a substantial (60%) part of the error. The exploitation of PROBA-V 100-m images at the finest resolution (100-m) would enhance by 20% the vegetation detection in fragmented habitat. A survey revealed that end-users are satisfied with the product and find it fit for monitoring, thanks to an intuitive interpretation, leading to more efficiency.

Collaboration


Dive into the François Waldner's collaboration.

Top Co-Authors

Avatar

Pierre Defourny

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Damien Christophe Jacques

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Julien Radoux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Raphaël d'Andrimont

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Fabian Löw

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Steffen Fritz

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Neri

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Marie-Julie Lambert

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Linda See

International Institute for Applied Systems Analysis

View shared research outputs
Researchain Logo
Decentralizing Knowledge