François-Xavier Briand
ANSES
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François-Xavier Briand.
Avian Pathology | 2008
Ghislaine Le Gall-Reculé; François-Xavier Briand; Audrey Schmitz; Olivier Guionie; Pascale Massin; Véronique Jestin
Highly pathogenic avian influenza (HPAI) viruses of subtype H5N1 have spread since late 2003 in East and Southeast Asia. In April 2005, a large-scale outbreak of H5N1 infection that occurred in migratory waterfowl in Qinghai Lake nature reserve in western China, killing more than 6000 wild birds, appeared to be the beginning of a epizootic that caused outbreaks in domestic and wild birds in nearly 60 countries from Central Asia, the Middle East, Europe and Africa. The first case of Asian lineage HPAI H5N1 virus in France was described in dead wild ducks (Common pochard) in the east of France in mid-February 2006. Up to the end of April, 42 HPAI H5N1 viruses were identified from about 60 wild birds belonging to different species and one outbreak occurred in commercial turkeys. To establish genetic relationships with other HPAI H5N1 viruses, 12 selected viruses were subjected to phylogenetic analysis. Genotyping and genetic analyses revealed that the French viruses were very similar to those of the ‘Qinghai-like’ sublineage and belonged to clade 2.2. However, two related but distinct genetic subgroups were identified, indicating that two different viruses were circulating in France at the same time and in the same area. Viruses of one subgroup were highly similar to one identified in Bavaria in Germany (A/mallard/Bavaria/1/2006). More surprisingly, French viruses belonging to the other subgroup retained the cleavage motif PQGERKRKKR/G, which is unique among the known HPAI H5N1 viruses. Our results confirmed that multiple H5N1 genogroups were present in Western Europe in early 2006.
Journal of Virology | 2012
François-Xavier Briand; Aurélie Henry; Pascale Massin; Véronique Jestin
ABSTRACT We report here the complete genome of a new avian paramyxovirus (APMV-11) isolated from common snipes. Sequence data from this virus showed that it has the largest genome of APMV and unusual P gene mRNA editing.
PLOS ONE | 2010
Olivier Fridolin Maminiaina; Patricia Gil; François-Xavier Briand; Emmanuel Albina; Djénéba Keita; Harentsoaniaina Rasamoelina Andriamanivo; Véronique Chevalier; Renaud Lancelot; Dominique Martinez; René Rakotondravao; Jean-Joseph Rajaonarison; M. Koko; Abel Andriantsimahavandy; Véronique Jestin; Renata Servan de Almeida
In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed.
PLOS ONE | 2013
Renata Servan de Almeida; Saliha Hammoumi; Patricia Gil; François-Xavier Briand; Sophie Molia; Nicolas Gaidet; Julien Cappelle; Véronique Chevalier; Gilles Balança; Abdallah Traoré; Colette Grillet; Olivier Fridolin Maminiaina; Samia Guendouz; Marthin Dakouo; Kassim Samake; Ould El Mamy Bezeid; Abbas Diarra; Hassen Chaka; Flavie Goutard; Peter N. Thompson; Dominique Martinez; Véronique Jestin; Emmanuel Albina
Newcastle disease (ND) is one of the most lethal diseases of poultry worldwide. It is caused by an avian paramyxovirus 1 that has high genomic diversity. In the framework of an international surveillance program launched in 2007, several thousand samples from domestic and wild birds in Africa were collected and analyzed. ND viruses (NDV) were detected and isolated in apparently healthy fowls and wild birds. However, two thirds of the isolates collected in this study were classified as virulent strains of NDV based on the molecular analysis of the fusion protein and experimental in vivo challenges with two representative isolates. Phylogenetic analysis based on the F and HN genes showed that isolates recovered from poultry in Mali and Ethiopia form new groups, herein proposed as genotypes XIV and sub-genotype VIf with reference to the new nomenclature described by Diel’s group. In Madagascar, the circulation of NDV strains of genotype XI, originally reported elsewhere, is also confirmed. Full genome sequencing of five African isolates was generated and an extensive phylogeny reconstruction was carried out based on the nucleotide sequences. The evolutionary distances between groups and the specific amino acid signatures of each cluster allowed us to refine the genotype nomenclature.
Journal of General Virology | 2010
François-Xavier Briand; G. le Gall-Recule; C. Guillou-Cloarec; K. Ogor; Véronique Jestin
H5 low-pathogenic avian influenza virus (LPAIV) has the potential to become highly pathogenic and to cause serious problems in animal and public health. AIV surveillance and characterization in both wild and domestic species is therefore necessary. In order to acquire molecular information and to identify possible reassortments in French viruses, we analysed the entire genome of five H5N3, three H5N2 and two H5N1 LPAIV, isolated in France between 2002 and 2008 mostly from captive ducks (free-range commercial poultry or decoy ducks). Some of the genome sequences showed atypical characteristics, such as an insertion of 1 aa in the PB1 protein of one H5N3, a highly truncated PB1-F2 protein (11 aa in length instead of 90 aa) in one H5N2, and an insertion of 8 aa in the NS1 protein of H5N1. These two last molecular characteristics have not been described previously. Phylogenetic analysis demonstrated that all genes of French LPAIV, except the closely related matrix protein genes, clustered within the Eurasian avian influenzavirus lineage and fell into at least two phylogenetic subgroups. In addition, the French H5 LPAIV were segregated into eight genotypes, suggesting that many reassortment events have occurred in H5 LPAIV in Europe. However, it is not known whether the reassortment events have occurred in wild waterfowl and/or in captive birds in direct or indirect contact with wild birds.
Avian Pathology | 2011
S. Maurel; D. Toquin; François-Xavier Briand; M. Quéguiner; C. Allée; J. Bertin; L. Ravillion; C. Retaux; V. Turblin; H. Morvan; Nicolas Eterradossi
An increasing incidence of enteric disorders clinically suggestive of the poult enteritis complex has been observed in turkeys in France since 2003. Using a newly designed real-time reverse transcriptase-polymerase chain reaction assay specific for the nucleocapsid (N) gene of infectious bronchitis virus (IBV) and turkey coronaviruses (TCoV), coronaviruses were identified in 37% of the intestinal samples collected from diseased turkey flocks. The full-length spike (S) gene of these viruses was amplified, cloned and sequenced from three samples. The French S sequences shared 98% identity at both the nucleotide and amino acid levels, whereas they were at most 65% and 60% identical with North American (NA) TCoV and at most 50% and 37% identical with IBV at the nucleotide and amino acid levels, respectively. Higher divergence with NA TCoV was observed in the S1-encoding domain. Phylogenetic analysis based on the S gene revealed that the newly detected viruses form a sublineage genetically related with, but significantly different from, NA TCoV. Additionally, the RNA-dependent RNA polymerase gene and the N gene, located on the 5′ and 3′ sides of the S gene in the coronavirus genome, were partially sequenced. Phylogenetic analysis revealed that both the NA TCoV and French TCoV (Fr TCoV) lineages included some IBV relatives, which were however different in the two lineages. This suggested that different recombination events could have played a role in the evolution of the NA and Fr TCoV. The present results provide the first S sequence for a European TCoV. They reveal extensive genetic variation in TCoV and suggest different evolutionary pathways in North America and Europe.
Eurosurveillance | 2017
François-Xavier Briand; Audrey Schmitz; Katell Ogor; Aurélie Le Prioux; Cécile Guillou-Cloarec; Carole Guillemoto; Chantal Allée; Marie-Odile Le Bras; Edouard Hirchaud; Hélène Quenault; Fabrice Touzain; Martine Cherbonnel-Pansart; Evelyne Lemaitre; Céline Courtillon; Hélène Gares; Patrick Daniel; Alexandre Fediaevsky; Pascale Massin; Yannick Blanchard; Nicolas Eterradossi; Sylvie van der Werf; Véronique Jestin; Eric Niqueux
Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein – with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses – or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential.
Genome Announcements | 2013
François-Xavier Briand; Aurélie Henry; Paul Brown; Pascale Massin; Véronique Jestin
ABSTRACT We report the first complete genome sequence of a strain that presents some pathogenicity and that belongs to a recently characterized genotype of avian paramyxovirus type 1 (APMV-1). This virus, isolated from the common teal, presents the most divergent genome within class I of APMV-1.
Journal of Clinical Microbiology | 2011
François-Xavier Briand; Eric Niqueux; Anne Laure Brochet; Jean Hars; Véronique Jestin
Wild aquatic birds are the main reservoir of avian influenza viruses (AIV) and play a major epidemiological role in the persistence and spread of infection ([7][1]). Given their constant evolution, AIV are a permanent threat to animal and public health and their active surveillance was intensified
Veterinary Microbiology | 2014
François-Xavier Briand; Pascale Massin; Véronique Jestin
Newcastle disease, induced by a type 1 Avian Paramyxovirus (APMV-1), is one of the most serious poultry diseases. APMV-1 are divided into two classes based on genetic analysis: class II strains have been recovered from wild or domestic birds and include virulent and avirulent isolates whereas class I strains have been mainly isolated from wild birds and are avirulent. Within class I, a new proposed genotype has recently been reported. The only full genome strain of this group is presently characterised from the point of view of codon usage with reference to class I and class II specificities. Class-specific residues were identified on HN and F proteins that are the two major proteins involved in cell attachment and pathogenicity. Comparison of protein patterns and codon usage for this newly identified APMV-1 strain indicates it is similar to class I viruses but contains a few characteristics close to the viruses of class II. Transmission of viruses from this recently identified divergent group from wild birds to domestic birds could have a major impact on the domestic poultry industry.
Collaboration
Dive into the François-Xavier Briand's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputs