Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francoise Combes is active.

Publication


Featured researches published by Francoise Combes.


Astronomy and Astrophysics | 2014

Planck 2013 results

J. Alves; Claude Bertout; Francoise Combes; Andrea Ferrara; Thierry Forveille; Tristan Guillot; R. Napiwotzki; Hardi Peter; S. Shore; Eline Tolstoy; Malcolm Walmsley

In this volume, we proudly present a special feature on science results from the data that ESA Planck mission gathered over its first 15 months and which ESA and the Planck Collaboration released in March 2013. This collection of 31 articles presents the initial scientific results extracted from this first Planck dataset, which measures the cosmic microwave background (CMB) with the highest accuracy to date. It provides major new advances in different domains of cosmology and astrophysics. We thank Jan Tauber and the Planck Science Team for coordinating this special feature.


Nature | 2010

High molecular gas fractions in normal massive star-forming galaxies in the young universe

L. J. Tacconi; R. Genzel; R. Neri; P. Cox; Michael C. Cooper; Kristen L. Shapiro; Alberto D. Bolatto; Nicolas Bouché; F. Bournaud; Andreas Burkert; Francoise Combes; Julia M. Comerford; M. Davis; N. M. Foerster Schreiber; S. Garcia-Burillo; J. Graciá-Carpio; D. Lutz; T. Naab; A. Omont; Alice E. Shapley; A. Sternberg; Benjamin J. Weiner

Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts <z> of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today’s massive spiral galaxies. The slow decrease between z ≈ 2 and z ≈ 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.


Monthly Notices of the Royal Astronomical Society | 2010

A study of the gas–star formation relation over cosmic time★

R. Genzel; L. J. Tacconi; J. Graciá-Carpio; A. Sternberg; Michael C. Cooper; Kristen L. Shapiro; Alberto D. Bolatto; N. Bouché; F. Bournaud; Andreas Burkert; Francoise Combes; Julia M. Comerford; P. Cox; M. Davis; N. M. Foerster Schreiber; S. Garcia-Burillo; D. Lutz; T. Naab; R. Neri; A. Omont; Alice E. Shapley; Benjamin J. Weiner

We use the first systematic data sets of CO molecular line emission in z∼ 1–3 normal star-forming galaxies (SFGs) for a comparison of the dependence of galaxy-averaged star formation rates on molecular gas masses at low and high redshifts, and in different galactic environments. Although the current high-z samples are still small and biased towards the luminous and massive tail of the actively star-forming ‘main-sequence’, a fairly clear picture is emerging. Independent of whether galaxy-integrated quantities or surface densities are considered, low- and high-z SFG populations appear to follow similar molecular gas–star formation relations with slopes 1.1 to 1.2, over three orders of magnitude in gas mass or surface density. The gas-depletion time-scale in these SFGs grows from 0.5 Gyr at z∼ 2 to 1.5 Gyr at z∼ 0. The average corresponds to a fairly low star formation efficiency of 2 per cent per dynamical time. Because star formation depletion times are significantly smaller than the Hubble time at all redshifts sampled, star formation rates and gas fractions are set by the balance between gas accretion from the halo and stellar feedback. In contrast, very luminous and ultraluminous, gas-rich major mergers at both low and high z produce on average four to 10 times more far-infrared luminosity per unit gas mass. We show that only some fraction of this difference can be explained by uncertainties in gas mass or luminosity estimators; much of it must be intrinsic. A possible explanation is a top-heavy stellar mass function in the merging systems but the most likely interpretation is that the star formation relation is driven by global dynamical effects. For a given mass, the more compact merger systems produce stars more rapidly because their gas clouds are more compressed with shorter dynamical times, so that they churn more quickly through the available gas reservoir than the typical normal disc galaxies. When the dependence on galactic dynamical time-scale is explicitly included, disc galaxies and mergers appear to follow similar gas-to-star formation relations. The mergers may be forming stars at slightly higher efficiencies than the discs.


Astronomy and Astrophysics | 2007

Star formation efficiency in galaxy interactions and mergers: a statistical study

P. Di Matteo; Francoise Combes; A.-L. Melchior; B. Semelin

We investigate the enhancement of star formation efficiency in galaxy interactions and mergers by numerical simulations of several hundred galaxy collisions. All morphological types along the Hubble sequence are considered in the initial conditions of the two colliding galaxies, with varying bulge-to-disk ratios and gas mass fractions. Different types of orbits are simulated, direct and retrograde, according to the initial relative energy and impact parameter, and the resulting star formation history is compared to that occuring in the two galaxies when they are isolated. Our principal results are (1) retrograde encounters have greater star formation efficiency (SFE) than direct encounters, (2) the amount of gas available in the galaxy is not the main parameter governing the SFE in the burst phase, (3) there is a negative correlation between the amplitude of the star forming burst and the tidal forces exerted per unit of time, which is due to the large amount of gas dragged outside the galaxy by tidal tails in strong interactions, (4) globally, the Kennicutt-Schmidt law is seen to apply statistically for isolated galaxies, interacting pairs and mergers, (5) enhanced star formation occurs essentially in nuclear starbursts, triggered by inward gas flows driven by non-axisymmetries in the galaxy disks. Direct encounters develop more pronounced asymmetries than retrograde ones. Based on these statistical results we derive general laws for the enhancement of star formation in galaxy interactions and mergers, as a function of the main parameters of the encounter.


Monthly Notices of the Royal Astronomical Society | 2011

The ATLAS3D project - IV. The molecular gas content of early-type galaxies

Lisa M. Young; Martin Bureau; Timothy A. Davis; Francoise Combes; Richard M. McDermid; Katherine Alatalo; Leo Blitz; Maxime Bois; Frédéric Bournaud; Michele Cappellari; Roger L. Davies; P. T. de Zeeuw; Eric Emsellem; Sadegh Khochfar; Davor Krajnović; Harald Kuntschner; Pierre-Yves Lablanche; Raffaella Morganti; Thorsten Naab; Tom Oosterloo; Marc Sarzi; Nicholas Scott; Paolo Serra; Anne-Marie Weijmans

The definitive version can be found at : http://onlinelibrary.wiley.com/ Copyright Royal Astronomical Society


Astronomy and Astrophysics | 2002

Gas accretion on spiral galaxies: Bar formation and renewal

F. Bournaud; Francoise Combes

The eects of gas accretion on spiral disk dynamics and stability are studied through N-body simulations, including star formation and gas/stars mass exchange. The detailed processes of bar formation, bar destruction and bar re-formation are followed, while in the same time the disk to bulge ratio is varying. The accreted gas might be first prevented to flow inwards to the center by the bar gravity torques, which maintains it to the outer Lindblad resonance. While the first bar is weakening, the accreted gas replenishes the disk, increasing the disk-to-bulge ratio, and the disk self-gravity. A second bar is then unstable, with a higher pattern speed, due both to the increased mass, and shorter bar length. Three or four bar episodes have been followed over a Hubble time. Their strength is decreasing with time, while their pattern speed is increasing. Detailed balance of the angular momentum transfer and evolution can account for these processes. The gas recycled through star formation, and rejected through stellar mass loss plays also a role in the disk dynamics. Implications on the spiral galaxy dynamics and evolution along the Hubble sequence, and as a function of redshift are discussed.


Astronomy and Astrophysics | 2007

Multiple minor mergers: formation of elliptical galaxies and constraints for the growth of spiral disks

Frédéric Bournaud; Chanda J. Jog; Francoise Combes

Multiple, sequential mergers are unavoidable in the hierarchical build-up picture of galaxies, in particular for the minor mergers that are frequent and highly likely to have occured several times for most present-day galaxies. However, the effect of repeated minor mergers on galactic structure and evolution has not been studied systematically so far. We present a numerical study of multiple, subsequent, minor galaxy mergers, with various mass ratios ranging from 4:1 to 50:1. The N-body simulations include gas dynamics and star formation. We study the morphological and kinematical properties of the remnants, and show that several so-called “minor” mergers can lead to the formation of elliptical-like galaxies that have global morphological and kinematical properties similar to that observed in real elliptical galaxies. The properties of these systems are compared with those of elliptical galaxies produced by the standard scenario of one single major merger. We thus show that repeated minor mergers can theoretically form elliptical galaxies without major mergers, and can be more frequent than major mergers, in particular at moderate redshift. This process must then have formed some elliptical galaxies seen today, and could in particular explain the high boxiness of massive ellipticals, and some fundamental relations observed in ellipticals. In addition, because repeated minor mergers, even at high mass ratios, destroy disks into spheroids, these results indicate that spiral galaxies cannot have grown only by a succession of minor mergers.


Astronomy and Astrophysics | 2003

Cold molecular gas in cooling flow clusters of galaxies

P. Salome; Francoise Combes

The results of a CO line survey in central cluster galaxies with cooling flows are presented. Cold molecular gas is detected with the IRAM 30 m telescope, through CO(1-0) and CO(2-1) emission lines in 6-10 among 32 galaxies. The corresponding gas masses are between 3 × 10 8 and 4 × 10 10 M� . These results are in agreement with recent CO detections by Edge (2001). A strong correlation between the CO emission and the Hα luminosity is also confirmed. Cold gas exists in the center of cooling flow clusters and these detections may be interpreted as evidence of the long searched for very cold residual of the hot cooling gas.


The Astrophysical Journal | 2004

FLAT-CORED DARK MATTER IN CUSPY CLUSTERS OF GALAXIES

Amr A. El-Zant; Yehuda Hoffman; Joel R. Primack; Francoise Combes; Isaac Shlosman

Sand and coworkers have measured the central density profile of cluster MS 213723 with gravitational lensing and velocity dispersion and removed the stellar contribution with a reasonable M/L. The resulting dark matter (DM) distribution within was fitted by a density cusp of with , in an apparent 1 b r ! 50 h kpc r b p 0.35 contradiction to the cold dark matter prediction of . The disagreement worsens if adiabatic compression of b ∼ 1 the DM by the infalling baryons is considered. Following El-Zant, Shlosman, & Hoffman, we argue that dynamical friction acting on galaxies moving within the DM background counters the effect of adiabatic compression by transfering their orbital energy to the DM, thus heating up and softening the cusp. Using N-body simulations we show that indeed the inner DM distribution flattens (with for a cluster like MS 2137 23) when the b ≈ 0.35 galaxies spiral inward. We find as a robust result that while the DM distribution becomes core-like, the overall mass distribution preserves its cuspy nature, in agreement with X-ray and lensing observations of clusters. Subject heading: dark matter — galaxies: clusters: general — galaxies: formation — galaxies: halos


Astronomy and Astrophysics | 2003

Formation of polar ring galaxies

F. Bournaud; Francoise Combes

Polar ring galaxies are peculiar systems in which a gas-rich, nearly polar ring surrounds an early-type or elliptical host galaxy. Two formation scenarios for these objects have been proposed: they are thought to form either in major galaxy mergers or by tidal accretion of the polar material from a gas rich donor galaxy. Both scenarios are studied through N -body simulations including gas dynamics and star formation. Constraints on physical parameters are drawn out, in order to determine which scenario is the most likely to occur. Polar ring galaxies from each scenario are compared with observations and we discuss whether the accretion scenario and the merging scenario account for observational properties of polar ring galaxies. The conclusion of this study is that the accretion scenario is both the most likely and the most supported by observations. Even if the merging scenario is rather robust, most polar ring galaxies are shown to be the result of tidal gas accretion events.

Collaboration


Dive into the Francoise Combes's collaboration.

Top Co-Authors

Avatar

P. Salomé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Bournaud

Paris Diderot University

View shared research outputs
Top Co-Authors

Avatar

R. Neri

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

Tommy Wiklind

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge