Françoise Moos
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Françoise Moos.
The Journal of Physiology | 1997
Nicolas Hussy; Charlotte Deleuze; Antoine Pantaloni; Michel G. Desarménien; Françoise Moos
1 To evaluate the implication of taurine in the physiology of supraoptic neurones, we (i) investigated the agonist properties of taurine on glycine and GABAA receptors of supraoptic magnocellular neurones acutely dissociated from adult rats, using whole‐cell voltage clamp, (ii) studied the effects of taurine and strychnine in vivo by extracellular recordings of supraoptic vasopressin neurones in anaesthetized rats, and (iii) measured the osmolarity‐dependent release of endogenous taurine from isolated supraoptic nuclei by HPLC. 2 GABA, glycine and taurine evoked rapidly activating currents that all reversed close to the equilibrium potential for Cl−, indicating activation of Cl− selective channels. Glycine‐activated currents were reversibly blocked by strychnine (IC50 of 35 nM with 100μm glycine), but were unaffected by the GABAA antagonist gabazine (1–3 μm). GABA‐activated currents were reversibly antagonized by 3 μm gabazine, but not by strychnine (up to 1 μm). 3 Responses to 1 mm taurine were blocked by strychnine but not by gabazine and showed no additivity with glycine‐induced currents, indicating selective activation of glycine receptors. Responses to 10 mm taurine were partially antagonized by gabazine, the residual current being blocked by strychnine. Thus, taurine is also a weak agonist of GABAA receptors. 4 In the presence of gabazine, taurine activated glycine receptors with an EC50 of 406 μm. Taurine activated at most 70% of maximal glycine currents, suggesting that it is a partial agonist of glycine receptors. 5 In vivo, locally applied strychnine (300 mm) increased and taurine (1 mm) decreased the basal electrical activity of vasopressin neurones in normally hydrated rats. The effect of strychnine was markedly more pronounced in water‐loaded rats. 6 Taurine, which is concentrated in supraoptic glial cells, could be released from isolated supraoptic nuclei upon hyposmotic stimulation. Decreases in osmolarity of 15 and 30% specifically enhanced basal release of taurine by 42 and 124%, respectively. 7 We conclude that supraoptic neurones express high amounts of glycine receptors, of which taurine may be regarded as a major natural agonist. We postulate that taurine, which can be released in hyposmotic situations, acts on glycine receptors to exert an inhibitory control on magnocellular neurones during alterations of body fluid homeostasis, implicating an active participation of glial cells in this neuroendocrine regulatory loop.
Progress in Neurobiology | 2000
Nicolas Hussy; Charlotte Deleuze; Michel G. Desarménien; Françoise Moos
Maintenance of osmotic pressure is a primary regulatory process essential for normal cell function. The osmolarity of extracellular fluids is regulated by modifying the intake and excretion of salts and water. A major component of this regulatory process is the neuroendocrine hypothalamo-neurohypophysial system, which consists of neurons located in the paraventricular and supraoptic nuclei. These neurons synthesize the neurohormones vasopressin and oxytocin and release them in the blood circulation. We here review the mechanisms responsible for the osmoregulation of the activity of these neurons. Notably, the osmosensitivity of the supraoptic nucleus is described including the recent data that suggests an important participation of taurine in the transmission of the osmotic information. Taurine is an amino acid mainly known for its involvement in cell volume regulation, as it is one of the major inorganic osmolytes used by cells to compensate for changes in extracellular osmolarity. In the supraoptic nucleus, taurine is highly concentrated in astrocytes, and released in an osmodependent manner through volume-sensitive anion channels. Via its agonist action on neuronal glycine receptors, taurine is likely to contribute to the inhibition of neuronal activity induced by hypotonic stimuli. This inhibitory influence would complement the intrinsic osmosensitivity of supraoptic neurons, mediated by excitatory mechanoreceptors activated under hypertonic conditions. These observations extend the role of taurine from the regulation of cell volume to that of the whole body fluid balance. They also point to a new role of supraoptic glial cells as active components in a neuroendocrine regulatory loop.
The Journal of Physiology | 1989
Françoise Moos; Philippe Richard
1. Oxytocin was pressure injected through a glass micropipette into a supraoptic (SON) or paraventricular nucleus (PVN) while recording the electrical activities of oxytocin cells in a contralateral nucleus, to see whether oxytocin acts locally in the magnocellular nuclei to control their bursting activity and whether the oxytocin cells of the four magnocellular nuclei were functionally interconnected during suckling. To test the rapidity of these relations, similar intranuclear injections were realized with acetylcholine, known to rapidly increase the background activity of oxytocin cells. The effects of intranuclear injections of oxytocin and acetylcholine were tested before and after interhemisphere sections of various dimensions. 2. Injecting oxytocin (1 ng in 100 nl) into a magnocellular nucleus (5 times into the PVN and 15 times into the SON) facilitated the occurrence and increased the amplitude of bursts of the oxytocin cells in both the contralateral PVN and SON. This facilitatory effect was similar to that induced by intraventricular injection of the same dose of oxytocin, though slightly delayed and lower. 3. Injecting acetylcholine (0.6 microgram in 100 nl) into the SON (7 times) induced a rapid and sustained increase in the background activity of oxytocin cells in both the contralateral PVN (2 times) and SON (5 times) within the same delay (less than 15 s). This excitatory effect was similar to that induced by an intraventricular injection of 5 micrograms acetylcholine. The effects on bursting activity were not considered in this study. 4. Neither the injections of oxytocin or acetylcholine outside but near the magnocellular nuclei (200‐500 microns), nor the intranuclear injection of 100‐200 nl of cerebrospinal fluid‐like medium, modified the background activity, the frequency and amplitude of bursts of the oxytocin cells in the nucleus contralateral to the injection site. 5. After interhemisphere sections most oxytocin cells were silent, bursts occurred in an erratic manner, and their amplitude was attenuated and irregular (more than the 20% variation normally recorded in non‐operated rats). Moreover, the amplitudes of successive bursts of pair‐recorded supraoptic‐supraoptic (SO‐SO) oxytocin cells, highly related in control conditions (correlation coefficient, r = 0.68 to 0.98) were no longer correlated after interhemisphere section (r = 0.24 to ‐0.61), but all bursts remained synchronized.(ABSTRACT TRUNCATED AT 400 WORDS)
British Journal of Pharmacology | 2000
Vanessa Brès; Amandine Hurbin; Anne Duvoid; Hélène Orcel; Françoise Moos; Alain Rabié; Nicolas Hussy
To characterize the volume‐sensitive, osmolyte permeable anion channels responsible for the osmodependent release of taurine from supraoptic nucleus (SON) astrocytes, we investigated the pharmacological properties of the [3H]‐taurine efflux from acutely isolated SON. Taurine release induced by hypotonic stimulus (250 mosmol l−1) was not antagonized by the taurine transporter blocker guanidinoethyl sulphonate, confirming the lack of implication of the transporter. The osmodependent release of taurine was blocked by a variety of Cl− channel inhibitors with the order of potency: NPPB>niflumic acid>DPC>DIDS>ATP. On the other hand, release of taurine was only weakly affected by other compounds (dideoxyforskolin, 4‐bromophenacyl bromide, mibefradil) known to block volume‐activated anion channels in other cell preparations, and was completely insensitive to tamoxifen, a broad inhibitor of these channels. Although the molecular identity of volume‐sensitive anion channels is not firmly established, a few genes have been postulated as potential candidates to encode such channels. We checked the expression in the SON of three of them, ClC3, phospholemman and VDAC1, and found that the transcripts of these genes are found in SON neurons, but not in astrocytes. Similar observation was previously reported for ClC2. In conclusion, the osmodependent taurine permeable channels of SON astrocytes display a particular pharmacological profile, suggesting the expression of a particular type or subtype of volume‐sensitive anion channel, which is likely to be formed by yet unidentified proteins.
The Journal of Physiology | 2000
Charlotte Deleuze; Anne Duvoid; Françoise Moos; Nicolas Hussy
1 In the supraoptic nucleus, taurine, selectively released in an osmodependent manner by glial cells through volume‐sensitive anion channels, is likely to inhibit neuronal activity as part of the osmoregulation of vasopressin release. We investigated the involvement of various kinases in the activation of taurine efflux by measuring [3H]taurine release from rat acutely isolated supraoptic nuclei. 2 The protein tyrosine kinase inhibitors genistein and tyrphostin B44 specifically reduced, but did not suppress, both the basal release of taurine and that evoked by a hypotonic stimulus. Inhibition of tyrosine phosphatase by orthovanadate had the opposite effect. 3 The tyrosine kinase and phosphatase inhibitors shifted the relationship between taurine release and medium osmolarity in opposite directions, suggesting that tyrosine phosphorylation modulates the osmosensitivity of taurine release, but is not necessary for its activation. 4 Genistein also increased the amplitude of the decay of the release observed during prolonged hypotonic stimulation. Potentiation of taurine release by tyrosine kinases could serve to maintain a high level of taurine release in spite of cell volume regulation. 5 Taurine release was unaffected by inhibitors and/or activators of PKA, PKC, MEK and Rho kinase. 6 Our results demonstrate a unique regulation by protein tyrosine kinase of the osmosensitivity of taurine efflux in supraoptic astrocytes. This points to the presence of specific volume‐dependent anion channels in these cells, or to a specific activation mechanism or regulatory properties. This may relate to the particular role of the osmodependent release of taurine in this structure in the osmoregulation of neuronal activity.
The Journal of Physiology | 1999
Laurent Gouzènes; Nancy Sabatier; Philippe Richard; Françoise Moos; Govindan Dayanithi
1 The pharmacological profile of receptors activated by vasopressin (AVP) in freshly dissociated supraoptic magnocellular neurones was investigated using specific V1a‐ and V2‐type AVP receptor agonists and antagonists. 2 In 97 % of AVP‐responding neurones (1–3000 nm) V1a or V2 receptor type agonists (F‐180 and dDAVP, respectively) elicited dose‐dependent [Ca2+]i transients that were suppressed by removal of external Ca2+. 3 The [Ca2+]i response induced by 1 μm F‐180 or dDAVP was selectively blocked by 10 nm of V1a and V2 antagonists (SR 49059 and SR 121463A, respectively). The response to V1a agonist was maintained in the presence of the V2 antagonist, and the V2 agonist‐induced response persisted in the presence of the V1a antagonist. 4 The [Ca2+]i response induced by 1 μm AVP was partially (61 %) blocked by 10 nm SR 121463A. This blockade was increased by a further 31 % with the addition of 10 nm SR 49059. Similarly, the AVP‐induced response was partially (47 %) decreased by SR 49059, and a further inhibition of 33 % was achieved in the presence of SR 121463A. 5 We demonstrate that AVP acts on the magnocellular neurones via two distinct types of AVP receptors that exhibit the pharmacological profiles of V1a and V2 types. However, since V2 receptor mRNA is not expressed in the supraoptic nucleus (SON), and since V1b receptor transcripts are observed in the SON, we propose that the V2 receptor agonist and antagonist act on a ‘V2‐like’ receptor or a new type of AVP receptor that remains to be elucidated. The possibility that V2 ligands act on the V1b receptor cannot be excluded.
Journal of Neuroendocrinology | 1991
Françoise Moos; C. D. Ingram; J. B. Wakerley; Y. Guerné; M.J. Freund-Mercier; Ph. Richard
Several regions of the forebrain possess high densities of oxytocin (OT)‐binding sites including the bed nucleus of the stria terminalis (BST) and lateral septum (LS). In order to examine whether these regions participate in the central facilitation of the milk ejection reflex by OT, microinjections of OT (1 ng in 100 nl containing Janus Green dye) were made into the BST (13 tests) or LS (9 tests) of anaesthetized, suckled rats, while recording the electrical activity of OT neurons in the contralateral supraoptic nucleus. Histological localization of injection sites using Janus Green demonstrated that all BST injections were close to the anterior commissure, and LS injections were all located in the ventral division of the LS. Film autoradiographic visualization of OT‐binding sites (in 7 tests using [125I]OT antagonist) confirmed that the BST and LS injections were located within regions of high OT binding. Injections into both regions facilitated the milk ejection reflex by increasing either the frequency and/or amplitude of OT neuron bursts, or by triggering bursts in animals that previously had shown no milk ejection responses; the mean number of milk ejections in the 30 min before and after injection increasing from 1.6·0.5 to 3.6·0.5 for BST and from 1.5·0.6 to 3.9·0.4 for LS. The OT microinjections had a more variable effect on background activity of OT neurons, increasing firing in some cases and not in others. This facilitatory effect was similar to that induced by microinjections into the lateral ventricle, but was smaller and delayed compared to that induced by injection into the third ventricle (9 tests), possibly due to unilateral activation of target sites. The facilitatory effect was unlikely to have been due to diffusion of OT into the ventricle, since injections into control sites (striatum and thalamus) at similar distances from the ventricle (9 tests) had no facilitatory effect (number of bursts during 30 min before and after injection; 2.2·0.5 and 1.8·0.5, respectively). These data suggest that limbic structures (BST and LS) participate in the action of central OT on the pattern of milk ejections in the suckled rat.
Advances in Experimental Medicine and Biology | 1998
Françoise Moos; L. Gouzènes; D. Brown; G. Dayanithi; N. Sabatier; L. Boissin; A. Rabié; P. Richard
In the rat, oxytocin (OT) and vasopressin (AVP) neurones exhibit specific electrical activities which are controlled by OT and AVP released from soma and dendrites within the magnocellular hypothalamic nuclei. OT enhances amplitude and frequency of suckling-induced bursts, and changes basal firing characteristics: spike patterning becomes very irregular (spike clusters separated by long silences), firing rate is highly variable, oscillating before facilitated bursts. This unstable behaviour which markedly decreases during hyperosmotic stimulation (interrupting bursting) could be a prerequisite for bursting. The effects of AVP depend on the initial phasic pattern of AVP neurones: AVP excites weakly active neurones (increasing burst duration, decreasing silences) and inhibits highly active neurones; neurones with intermediate phasic activity are unaffected. Thus, AVP ensures all AVP neurones discharge with moderate phasic activity (bursts and silences lasting 20-40 s), known to optimise systemic AVP release. V1a-type receptors are involved in AVP actions. In conclusion, OT and AVP control their respective neurones in a complex manner to favour the patterns of activity which are the best suited for an efficient systemic hormone release.
Neuroscience | 1997
Françoise Moos; K Rossi; Ph. Richard
The control of suckling-induced bursting activity of oxytocin neurons and of phasic activity of vasopressin neurons by N-methyl-D-aspartate receptors was investigated in anaesthetized lactating rats. Receptor antagonist or agonist was applied in the vicinity of supraoptic neurons recorded extracellularly. The basal activity of oxytocin neurons was tonically decreased and increased by sustained application of the antagonist and agonist respectively. These effects occurred independently of the effectiveness of suckling to trigger the bursting pattern. When drugs were applied during an ongoing series of milk-ejection-related bursts, these changes were accompanied by parallel modifications in burst amplitude, but burst periodicity was unaffected. In rats failing to milk-eject, antagonist or agonist application did not facilitate the occurrence of bursts. Simultaneous recordings from oxytocin neurons in the contralateral supraoptic nucleus showed that neither their basal nor their bursting activity were affected, indicating the absence of cross-talk between nuclei during such application. The excitatory effect of N-methyl-D-aspartate differed from that induced in the same neurons by i.c.v. injection of oxytocin, which enhanced basal level of activity and burst amplitude, but also increased burst frequency. Furthermore, the distribution of interspike intervals indicated that N-methyl-D-aspartate, but not oxytocin, induced a regularization of the spike pattern. For vasopressin neurons, application of the receptor antagonist inhibited phasic activity by decreasing burst duration and increasing silences. Conversely, N-methyl-D-aspartate enhanced phasic activity, increasing both the duration of the active phases and the frequency of spikes during active phases. When applied to silent vasopressin neurons, N-methyl-D-aspartate induced a regular phasic activity. These results provide evidence that functional N-methyl-D-aspartate receptors regulate the excitability of both oxytocin and vasopressin neurons in lactating rats. These receptors play a paramount role in maintaining a certain level of basal activity which will favour appropriate discharge patterns, tonic for oxytocin neurons and phasic for vasopressin neurons. For oxytocin neurons, this sustained control by ambient glutamate influences the amplitude of bursts, but N-methyl-D-aspartate receptors are probably not involved in the generation of the bursting pattern.
Neuroscience | 1993
R.C. Lambert; Françoise Moos; C. D. Ingram; J.B. Wakerley; P. Kremarik; Y. Guerné; Ph. Richard
Our previous results obtained by lesioning or stimulating the ventrolateral part of the lateral septum and the bed nuclei of the stria terminalis suggested that this area is involved in the control of milk ejection pattern in rats. The present study was undertaken with the aim of testing ventrolateral part of the lateral septum-bed nuclei of the stria terminalis neurons as a putative link of the neuronal network controlling the bursting activity of oxytocin neurons in suckled lactating rats (anaesthetized with urethane). Ventrolateral part of the lateral septum-bed nuclei of the stria terminalis neurons were recorded simultaneously with hypothalamic oxytocin neurons in either the paraventricular or supraoptic nucleus in rats with (n = 26) or without (n = 29) periodic milk ejections. Analysis of their firing pattern enabled differentiation of two subgroups: type I, characterized by numerous high frequency spikes, often grouped in clusters; and type II with very few or no high frequency clusters of spikes. The probability density function of the interspike intervals of both patterns could be modelled using a mixture of two log-normal distributions, the parameters of which differed significantly. The presence of absence of milk ejections did not influence the overall mean level of activity (2.0 +/- 0.5 and 1.9 +/- 0.4 spikes/s, respectively). However, the characteristics of the type I firing pattern were affected by the presence of the milk-ejection reflex. The average level of activity was not always constant and 16/55 ventrolateral part of the lateral septum-bed nuclei of the stria terminalis neurons displayed cyclical activity (from 0.6 +/- 0.2 to 4.0 +/- 0.5 spikes/s) both in the presence (n = 8) and absence (n = 8) of the milk-ejection reflex. In five of eight neurons recorded during milk-ejection reflex, the cycles in firing were clearly correlated with the bursting of oxytocin neurons. These five neurons exhibited the type I firing pattern. The three remaining neurons and the eight neurons recorded in the absence of milk-ejection reflex displayed the type II firing pattern. Oxytocin (1-2 ng = 0.45-0.9 mU) was injected into the third ventricle (i.c.v.) in order to examine the possible involvement of ventrolateral part of the lateral septum-bed nuclei of the stria terminalis neurons in the facilitatory effect of oxytocin on the reflex.(ABSTRACT TRUNCATED AT 400 WORDS)