Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Françoise Rousset is active.

Publication


Featured researches published by Françoise Rousset.


Journal of Immunology | 2001

A Critical Role for p38 Mitogen-Activated Protein Kinase in the Maturation of Human Blood-Derived Dendritic Cells Induced by Lipopolysaccharide, TNF-α, and Contact Sensitizers

Jean-François Arrighi; Michela Rebsamen; Françoise Rousset; Vincent Kindler; Conrad Hauser

We investigated the involvement of mitogen-activated protein kinases (MAPKs) in the maturation of CD83− dendritic cells (DC) derived from human blood monocytes. Maturating agents such as LPS and TNF-α induced the phosphorylation of members of the three families of MAPK (extracellular signal-regulated kinase l/2, p46/54 c-Jun N-terminal kinase, and p38 MAPK). SB203580, an inhibitor of the p38 MAPK, but not the extracellular signal-regulated kinase l/2 pathway blocker PD98059, inhibited the up-regulation of CD1a, CD40, CD80, CD86, HLA-DR, and the DC maturation marker CD83 induced by LPS and TNF-α. In addition, SB203580 inhibited the enhancement of the allostimulatory capacity and partially prevented the down-regulation of FITC-dextran uptake induced by LPS and TNF-α. Likewise, SB203580 partially prevented the up-regulation of IL-1α, IL-1β, IL-lRa, and TNF-α mRNA upon stimulation with LPS and TNF-α, as well as the release of bioactive TNF-α induced by LPS. DC maturation induced by the contact sensitizers 2,4-dinitrofluorobenzene and NiSO4, as seen by the up-regulation of CD80, CD86, and CD83, was also coupled to the phosphorylation of p38 MAPK, and was inhibited by SB203580. The irritants SDS and benzalkonium chloride that do not induce DC maturation did not trigger p38 MAPK phosphorylation. Together, these data indicate that phosphorylation of p38 MAPK is critical for the maturation of immature DC. These results also suggest that p38 MAPK phosphorylation in DC may become useful for the identification of potential skin contact sensitizers.


Journal of Immunotoxicology | 2006

Activation of U937 Cells by Contact Sensitizers: CD86 Expression is Independent of Apoptosis

Nadège Ade; Silvia Martinozzi-Teissier; Marc Pallardy; Françoise Rousset

Among the different phenotypic changes induced by contact sensitizers in dendritic cells and myeloid cell lines, CD86 appears to be a consensus marker, since constantly described as systematically up-regulated. To evaluate the robustness of this marker, interference of cytotoxicity on CD86 expression was investigated in U937 myelomonocytic cell line. In this study, cytotoxicity observed at 48 hr (reading-time for CD86 expression) after treatment with DNCB, NiSO4 and pPD was shown to result from apoptosis taking place at earlier time points. This allergen-induced apoptosis was at least partly caspase-dependent as demonstrated by caspase-3 activation in response to DNCB and NiSO4 and inhibition of DNCB-induced apoptosis by Z-VAD-fmk. Inhibition of apoptosis did not modify the stimulation index of CD86 expression in DNCB-treated cells, indicating that apoptosis did not interfere with up-regulation of CD86 expression. In addition, similar CD86 expression level was found in DNCB-treated cells whether calculated from the whole non-necrotic cell population including apoptotic cells or from viable non-apoptotic cell population only. Altogether, these results brought evidence that the presence of cells engaged in death process are not a confusing factor for CD86 expression in response to contact sensitizers. They also pointed out apoptosis as another possible key marker of cellular response to contact sensitizers.


Toxicology in Vitro | 2000

In vitro human T cell sensitization to haptens by monocyte-derived dendritic cells

Géraldine Guironnet; Catherine Dalbiez-Gauthier; Françoise Rousset; Daniel Schmitt; Josette Péguet-Navarro

We previously reported that in vitro primary sensitization of hapten-specific T cells by cultured human epidermal Langerhans cells (LC) provides an alternative approach to discriminate strong contact sensitizers from irritants (Krasteva et al., 1996; Moulon et al., 1993). However, this LC-based immunoassay was limited by the availability of human skin samples. In the present study, we used monocyte-derived dendritic cells (DC) to analyse the autologous proliferative T cell response to several allergens. Monocytes were purified from the peripheral blood of healthy donors and cultured for 6-8 days in the presence of GM/CSF and IL-4 and then for 2 days in the presence of GM/CSF and TNFalpha. The resulting cells exhibited the phenotype of mature DC, as assessed by the strong expression of HLA-DR, CD80, CD83 and CD86 antigens. We showed that trinitrophenyl (TNP)-treated mature DC induced a significant T cell proliferative response in all experiments, while fluorescein isothiocyanate (FITC) gave positive results in about half of them. The prohaptens eugenol and isoeugenol induced significant proliferation in one out of eight and in four out of 12 experiments, respectively. Interestingly, in 16 assays T cells never proliferated in the presence of sodium lauryl sulfate (SLS)-treated DC. Thus, this in vitro model allows discrimination between strong contact sensitizers and irritants. It might be very useful, therefore, for restriction of animal experimentation.


Toxicology in Vitro | 2015

The Myeloid U937 Skin Sensitization Test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization

C. Piroird; Jean-Marc Ovigne; Françoise Rousset; Silvia Martinozzi-Teissier; Charles Gomes; José Cotovio; Nathalie Alépée

The U-SENS™ assay, formerly known as MUSST (Myeloid U937 Skin Sensitization Test), is an in vitro method to assess skin sensitization. Dendritic cell activation following exposure to sensitizers was modelled in the U937 human myeloid cell line by measuring the induction of the expression of CD86 by flow cytometry. The predictive performance of U-SENS™ was assessed via a comprehensive comparison analysis with the available human and LLNA data of 175 substances. U-SENS™ showed 79% specificity, 90% sensitivity and 88% accuracy. A four laboratory ring study demonstrated the transferability, reliability and reproducibility of U-SENS™, with a reproducibility of 95% within laboratories and 79% between-laboratories, showing that the U-SENS™ assay is a promising tool in a skin sensitization risk assessment testing strategy.


Clinical Chemistry and Laboratory Medicine | 2014

Skin aging by glycation: lessons from the reconstructed skin model

Hervé Pageon; Hélène Zucchi; Françoise Rousset; Vincent M. Monnier; Daniel Asselineau

Abstract Background: Aging is the result of several mechanisms which operate simultaneously. Among them, glycation is of particular interest because it is a reaction which affects slowly renewing tissues and macromolecules with elevated half-life, like the dermis, a skin compartment highly affected by aging. Glycation produces crosslinks between macromolecules thereby providing an explanation for the increased age-related stiffness of the skin. Glycation products, also called AGEs (advanced glycation end products), accumulate primarily in extracellular matrix molecules like collagen or elastin. Methods: In order to reproduce this phenomenon in vitro we have created a model of reconstructed skin modified by glycation of the collagen used to fabricate the dermal compartment. Results: This system allowed us to uncover biological modifications of dermal markers, and more surprisingly epidermal markers, as well as an increase of metalloproteinases responsible for degradation of the dermal matrix. Consequently, the imbalance between synthesis and degradation that results from glycation, may contribute to skin aging, as shown in this model. Moreover these modifications were shown to be prevented by the addition of aminoguanidine, a well-known inhibitor of glycation. Conclusions: Using this experimental approach our results taken together stress the importance and possibly central role of glycation in skin aging and the usefulness of the reconstructed skin as a model of physiological aging.


Experimental Gerontology | 2011

Opposing effects of cortisol and dehydroepiandrosterone on the expression of the receptor for Activated C Kinase 1: Implications in immunosenescence

Erica Buoso; Cristina Lanni; Elisabetta Molteni; Françoise Rousset; Emanuela Corsini; Marco Racchi

Aging is associated to a decline in immune functions that are in part related to a defective protein kinase C dependent signal transduction machinery. RACK-1 (Receptor for Activated C Kinase 1) is a scaffold protein for different kinases and membrane receptors. We have previously demonstrated, in the elderly, a defective PCKβII (Protein Kinase C βII) translocation related to a decrease in RACK-1 protein expression, which is correlated to the age-associated decline in DHEA (dehydroepiandrosterone) levels. As a consequence of this signal transduction impairment, a significant decrease in immune cells functionality was observed. Furthermore, we could demonstrate that in vivo and in vitro DHEA administration restored RACK-1 level and immune functions, indicating that this hormone behaved as a positive RACK-1 regulator. We have most recently characterized the human GNB2L1 promoter region, coding for RACK-1 protein. Although no direct DHEA responsive elements were found, a glucocorticoid responsive element (GRE) was identified. The purpose of this work was to investigate, in the human pro-myelocytic cell line THP-1, whether physiological cortisol concentrations were able to modulate GNB2L1 promoter activity, RACK-1 transcription as well as cytokine production. As DHEA is endowed of anti-glucocorticoid properties in several cellular systems, and as cortisol:DHEA ratio imbalance is relevant in aging, we also investigated their possible interaction at the RACK-1 expression level. We could demonstrate that cortisol acted in a dose-related manner as a GNB2L1 promoter repressor, reducing RACK-1 mRNA expression and protein level. Probably by interfering with glucocorticoid receptor binding to GRE sequence, prolonged DHEA exposure counteracted cortisol effects, restoring RACK-1 levels and cytokine production, as assessed by LPS-induced TNF-α release.


Toxicology and Applied Pharmacology | 2011

Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

Aurélia Del Bufalo; José Bernad; Christophe Dardenne; Denis Verda; Jean Roch Meunier; Françoise Rousset; Silvia Martinozzi-Teissier; Bernard Pipy

For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers.


Bioorganic & Medicinal Chemistry | 2008

Sensitization to p-amino aromatic compounds: Study of the covalent binding of 2,5-dimethyl-p-benzoquinonediimine to a model peptide by electrospray ionization tandem mass spectrometry.

Joan Eilstein; Elena Giménez-Arnau; Daniel Duche; Nükhet Cavusoglu; Georges Hussler; Françoise Rousset; Jean-Pierre Lepoittevin

To understand the hapten-protein complex formation in the context of skin contact allergy to p-amino aromatic derivatives, 2,5-dimethyl-p-benzoquinonediimine was used as a model compound to study the reactivity of p-benzoquinonediimines, first oxidation intermediates of allergenic p-amino aromatic compounds, toward a model peptide containing naturally occurring and potential reactive amino acids. LC-MS analysis, together with electrospray ionization MS/MS, was used for the determination of amino acid selectivity by studying the chemical modifications induced on the peptide due to covalent binding of the p-benzoquinonediimine. Results reported in this paper indicated that 2,5-dimethyl-p-benzoquinonediimine reacted with the epsilon-NH(2) group of lysine to first form a covalent adduct of the Schiffs base kind. Besides, an oxido-reduction process started that induced an oxidative deamination of lysine to form a peptidyl alpha-aminoadipic-delta-semialdehyde, by a mechanism similar to the one known for several enzymatic quinonoid co-factors, followed by an intramolecular cyclization of the peptide. From these results it could be concluded that lysine must be considered as an important amino acid for the hapten-protein complex formation in the case of p-benzoquinonediimines and that, in addition to direct covalent binding, further degradation of the peptide can be produced.


Mechanisms of Ageing and Development | 2017

Glycation stimulates cutaneous monocyte differentiation in reconstructed skin in vitro

Hervé Pageon; Hélène Zucchi; Françoise Rousset; Sarah Girardeau‐Hubert; E. Tancrede; Daniel Asselineau

Glycation reaction is a recognized mechanism related to chronological aging. Previous investigations in cutaneous biology have considered the effect of glycation on the dermal matrix molecules, involved in tissue stiffening during skin aging. However, little is known about a possible direct effect of glycation upon cell differentiation. To address such issue, the effect of glycation has been re-investigated in a reconstructed skin model integrating monocytes that are cells capable of differentiating according to different pathways. The results showed that, in the absence of glycation, a small number of these CD45+ cells could differentiate either into dendritic-like cells (DC-SIGN+, BDC1a+, DC-LAMP+) or macrophage- like cells (CD14+, CD68+, CD163+) whereas, with glycation, the number of monocytes, dendritic cells, macrophage-like cells were found surprisingly increased. In-vivo our results showed also that dendritic and macrophage-like cells were increased and suggest a possible link with the age-dependent glycation level in the skin. In addition, we found that, unlike fibroblasts incorporated in the reconstructed skin, these cells expressed specific receptors for AGEs (RAGE and SRA). Taken altogether, our data show that cells of the monocyte lineage, in the presence of AGEs, can differentiate into dendritic or macrophage-like cells and could lead to a micro inflammatory environment.


Atla-alternatives To Laboratory Animals | 2005

Dendritic cells as a tool for the predictive identification of skin sensitisation hazard

Silvia Casati; Pierre Aeby; D. A. Basketter; Andrea Cavani; Alessandra Gennari; G. Frank Gerberick; Peter Griem; Thomas Hartung; Ian Kimber; Jean Pierre Lepoittevin; B. Jean Meade; Marc Pallardy; Nathalie Rougier; Françoise Rousset; Gilles Rubinstenn; Federica Sallusto; Geert R. Verheyen; Valérie Zuang

Collaboration


Dive into the Françoise Rousset's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Pallardy

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Kimber

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge