Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francyne Kubaski is active.

Publication


Featured researches published by Francyne Kubaski.


Molecular Genetics and Metabolism | 2015

Therapies for the bone in mucopolysaccharidoses

Shunji Tomatsu; Carlos J. Alméciga-Díaz; Adriana M. Montaño; Hiromasa Yabe; Akemi Tanaka; Vu Chi Dung; Roberto Giugliani; Francyne Kubaski; Robert W. Mason; Eriko Yasuda; Kazuki Sawamoto; William G. Mackenzie; Yasuyuki Suzuki; Kenji E. Orii; Luis Alejandro Barrera; William S. Sly; Tadao Orii

Patients with mucopolysaccharidoses (MPS) have accumulation of glycosaminoglycans in multiple tissues which may cause coarse facial features, mental retardation, recurrent ear and nose infections, inguinal and umbilical hernias, hepatosplenomegaly, and skeletal deformities. Clinical features related to bone lesions may include marked short stature, cervical stenosis, pectus carinatum, small lungs, joint rigidity (but laxity for MPS IV), kyphoscoliosis, lumbar gibbus, and genu valgum. Patients with MPS are often wheelchair-bound and physical handicaps increase with age as a result of progressive skeletal dysplasia, abnormal joint mobility, and osteoarthritis, leading to 1) stenosis of the upper cervical region, 2) restrictive small lung, 3) hip dysplasia, 4) restriction of joint movement, and 5) surgical complications. Patients often need multiple orthopedic procedures including cervical decompression and fusion, carpal tunnel release, hip reconstruction and replacement, and femoral or tibial osteotomy through their lifetime. Current measures to intervene in bone disease progression are not perfect and palliative, and improved therapies are urgently required. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), and gene therapy are available or in development for some types of MPS. Delivery of sufficient enzyme to bone, especially avascular cartilage, to prevent or ameliorate the devastating skeletal dysplasias remains an unmet challenge. The use of an anti-inflammatory drug is also under clinical study. Therapies should start at a very early stage prior to irreversible bone lesion, and damage since the severity of skeletal dysplasia is associated with level of activity during daily life. This review illustrates a current overview of therapies and their impact for bone lesions in MPS including ERT, HSCT, gene therapy, and anti-inflammatory drugs.


Drug Design Development and Therapy | 2015

Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome

Shunji Tomatsu; Kazuki Sawamoto; Carlos J. Alméciga-Díaz; Tsutomu Shimada; Michael B. Bober; Yasutsugu Chinen; Hiromasa Yabe; Adriana M. Montaño; Roberto Giugliani; Francyne Kubaski; Eriko Yasuda; Alexander Rodríguez-López; Angela J. Espejo-Mojica; Oscar F. Sánchez; Robert W. Mason; Luis Alejandro Barrera; William G. Mackenzie; Tadao Orii

Patients with mucopolysaccharidosis IVA (MPS IVA) can present with systemic skeletal dysplasia, leading to a need for multiple orthopedic surgical procedures, and often become wheelchair bound in their teenage years. Studies on patients with MPS IVA treated by enzyme replacement therapy (ERT) showed a sharp reduction on urinary keratan sulfate, but only modest improvement based on a 6-minute walk test and no significant improvement on a 3-minute climb-up test and lung function test compared with the placebo group, at least in the short-term. Surgical remnants from ERT-treated patients did not show reduction of storage materials in chondrocytes. The impact of ERT on bone lesions in patients with MPS IVA remains limited. ERT seems to be enhanced in a mouse model of MPS IVA by a novel form of the enzyme tagged with a bone-targeting moiety. The tagged enzyme remained in the circulation much longer than untagged native enzyme and was delivered to and retained in bone. Three-month-old MPS IVA mice treated with 23 weekly infusions of tagged enzyme showed marked clearance of the storage materials in bone, bone marrow, and heart valves. When treatment was initiated at birth, reduction of storage materials in tissues was even greater. These findings indicate that specific targeting of the enzyme to bone at an early stage may improve efficacy of ERT for MPS IVA. Recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21 (DE3) (erGALNS) and in the methylotrophic yeast Pichia pastoris (prGALNS) has been produced as an alternative to the conventional production in Chinese hamster ovary cells. Recombinant GALNS produced in microorganisms may help to reduce the high cost of ERT and the introduction of modifications to enhance targeting. Although only a limited number of patients with MPS IVA have been treated with hematopoietic stem cell transplantation (HSCT), beneficial effects have been reported. A wheelchair-bound patient with a severe form of MPS IVA was treated with HSCT at 15 years of age and followed up for 10 years. Radiographs showed that the figures of major and minor trochanter appeared. Loud snoring and apnea disappeared. In all, 1 year after bone marrow transplantation, bone mineral density at L2–L4 was increased from 0.372 g/cm2 to 0.548 g/cm2 and was maintained at a level of 0.48±0.054 for the following 9 years. Pulmonary vital capacity increased approximately 20% from a baseline of 1.08 L to around 1.31 L over the first 2 years and was maintained thereafter. Activity of daily living was improved similar to the normal control group. After bilateral osteotomies, a patient can walk over 400 m using hip–knee–ankle–foot orthoses. This long-term observation of a patient shows that this treatment can produce clinical improvements although bone deformity remained unchanged. In conclusion, ERT is a therapeutic option for MPS IVA patients, and there are some indications that HSCT may be an alternative to treat this disease. However, as neither seems to be a curative therapy, at least for the skeletal dysplasia in MPS IVA patients, new approaches are investigated to enhance efficacy and reduce costs to benefit MPS IVA patients.


Metabolites | 2014

Establishment of Glycosaminoglycan Assays for Mucopolysaccharidoses

Shunji Tomatsu; Tsutomu Shimada; Robert W. Mason; Adriana M. Montaño; Joan Kelly; William A. LaMarr; Francyne Kubaski; Roberto Giugliani; Aratrik Guha; Eriko Yasuda; William G. Mackenzie; Seiji Yamaguchi; Yasuyuki Suzuki; Tadao Orii

Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by deficiency of the lysosomal enzymes essential for catabolism of glycosaminoglycans (GAGs). Accumulation of undegraded GAGs results in dysfunction of multiple organs, resulting in distinct clinical manifestations. A range of methods have been developed to measure specific GAGs in various human samples to investigate diagnosis, prognosis, pathogenesis, GAG interaction with other molecules, and monitoring therapeutic efficacy. We established ELISA, liquid chromatography tandem mass spectrometry (LC-MS/MS), and an automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) to identify epitopes (ELISA) or disaccharides (MS/MS) derived from different GAGs (dermatan sulfate, heparan sulfate, keratan sulfate, and/or chondroitin sulfate). These methods have a high sensitivity and specificity in GAG analysis, applicable to the analysis of blood, urine, tissues, and cells. ELISA is feasible, sensitive, and reproducible with the standard equipment. HT-MS/MS yields higher throughput than conventional LC-MS/MS-based methods while the HT-MS/MS system does not have a chromatographic step and cannot distinguish GAGs with identical molecular weights, leading to a limitation of measurements for some specific GAGs. Here we review the advantages and disadvantages of these methods for measuring GAG levels in biological specimens. We also describe an unexpected secondary elevation of keratan sulfate in patients with MPS that is an indirect consequence of disruption of catabolism of other GAGs.


Expert opinion on orphan drugs | 2015

Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations

Shunji Tomatsu; Kazuki Sawamoto; Tsutomu Shimada; Michael B. Bober; Francyne Kubaski; Eriko Yasuda; Robert W. Mason; Shaukat Khan; Carlos J. Alméciga-Díaz; Luis Alejandro Barrera; William G. Mackenzie; Tadao Orii

Introduction: Following a Phase III, randomized, double-blind, placebo (PBO)-controlled, multinational study in subjects with mucopolysaccharidosis IVA (MPS IVA), enzyme replacement therapy (ERT) of elosulfase alfa has been approved in several countries. The study was designed to evaluate safety and efficacy of elosulfase alfa in patients with MPS IVA aged 5 years and older. Areas covered: Outcomes of clinical trials for MPS IVA have been described. Subjects received either 2.0 mg/kg/week, 2.0 mg/kg/every other week, or PBO, for 24 weeks. The primary endpoint was the change from baseline 6-min walk test (6MWT) distance compared to PBO. The 6MWT results improved in patients receiving 2 mg/kg weekly compared to PBO. The every other week regimen resulted in walk distances comparable to PBO. There was no change from baseline in the 3 Min Stair Climb Test in both treatment groups. Following completion of the initial study, patients, who continued to receive elosulfase alfa 2 mg/kg weekly (QW) for another 48 weeks (for a total of up to 72-week exposure), did not show additional improvement on 6MWT. Expert opinion: We suggest that ERT is a therapeutic option for MPS IVA, providing a modest effect and the majority of the effects are seen in the soft tissues.


Molecular Genetics and Metabolism | 2014

Novel heparan sulfate assay by using automated high-throughput mass spectrometry: Application to monitoring and screening for mucopolysaccharidoses.

Tsutomu Shimada; Joan Kelly; William A. LaMarr; Naomi van Vlies; Eriko Yasuda; Robert W. Mason; William G. Mackenzie; Francyne Kubaski; Roberto Giugliani; Yasutsugu Chinen; Seiji Yamaguchi; Yasuyuki Suzuki; Kenji E. Orii; Toshiyuki Fukao; Tadao Orii; Shunji Tomatsu

Mucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4-5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable. The automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) integrates a solid phase extraction robot to concentrate and desalt samples prior to direction into the MS/MS without chromatographic separation; thereby allowing each sample to be processed within 10s (enabling screening of more than one million samples per year). The aim of this study was to develop a higher throughput system to assay heparan sulfate (HS) using HT-MS/MS, and to compare its reproducibility, sensitivity and specificity with conventional LC-MS/MS. HS levels were measured in the blood (plasma and serum) from control subjects and patients with MPS II, III, or IV and in dried blood spots (DBS) from newborn controls and patients with MPS I, II, or III. Results obtained from HT-MS/MS showed 1) that there was a strong correlation of levels of disaccharides derived from HS in the blood, between those calculated using conventional LC-MS/MS and HT-MS/MS, 2) that levels of HS in the blood were significantly elevated in patients with MPS II and III, but not in MPS IVA, 3) that the level of HS in patients with a severe form of MPS II was higher than that in an attenuated form, 4) that reduction of blood HS level was observed in MPS II patients treated with enzyme replacement therapy or hematopoietic stem cell transplantation, and 5) that levels of HS in newborn DBS were elevated in patients with MPS I, II or III, compared to those of control newborns. In conclusion, HT-MS/MS provides much higher throughput than LC-MS/MS-based methods with similar sensitivity and specificity in an HS assay, indicating that HT-MS/MS may be feasible for diagnosis, monitoring, and newborn screening of MPS.


Molecular Genetics and Metabolism | 2017

Glycosaminoglycans detection methods: Applications of mass spectrometry

Francyne Kubaski; Harumi Osago; Robert W. Mason; Seiji Yamaguchi; Hironori Kobayashi; Mikako Tsuchiya; Tadao Orii; Shunji Tomatsu

Glycosaminoglycans (GAGs) are long blocks of negatively charged polysaccharides. They are one of the major components of the extracellular matrix and play multiple roles in different tissues and organs. The accumulation of undegraded GAGs causes mucopolysaccharidoses (MPS). GAGs are associated with other pathological conditions such as osteoarthritis, inflammation, diabetes mellitus, spinal cord injury, and cancer. The need for further understanding of GAG functions and mechanisms of action boosted the development of qualitative and quantitative (alcian blue, toluidine blue, paper and thin layer chromatography, gas chromatography, high pressure liquid chromatography, capillary electrophoresis, 1,9-dimethylmethylene blue, enzyme linked-immunosorbent assay, mass spectrometry) techniques. The availability of quantitative techniques has facilitated translational research on GAGs into the medical field for: 1) diagnosis, monitoring, and screening for MPS; 2) analysis of GAG synthetic and degradation pathways; and 3) determination of physiological and pathological roles of GAGs. This review provides a history of development of GAG assays and insights about the use of tandem mass spectrometry and its applications for GAG analysis.


Biology of Blood and Marrow Transplantation | 2017

Hematopoietic Stem Cell Transplantation for Patients with Mucopolysaccharidosis II

Francyne Kubaski; Hiromasa Yabe; Yasuyuki Suzuki; Toshiyuki Seto; Takashi Hamazaki; Robert W. Mason; Li Xie; Tor Gunnar Hugo Onsten; Sandra Leistner-Segal; Roberto Giugliani; Vũ Chí Dũng; Can Thi Bich Ngoc; Seiji Yamaguchi; Adriana M. Montaño; Kenji E. Orii; Toshiyuki Fukao; Haruo Shintaku; Tadao Orii; Shunji Tomatsu

There is limited information regarding the long-term outcomes of hematopoietic stem cell transplantation (HSCT) for mucopolysaccharidosis II (MPS II). In this study, clinical, biochemical, and radiologic findings were assessed in patients who underwent HSCT and/or enzyme replacement therapy (ERT). Demographic data for 146 HSCT patients were collected from 27 new cases and 119 published cases and were compared with 51 ERT and 15 untreated cases. Glycosaminoglycan (GAG) levels were analyzed by liquid chromatography tandem mass spectrometry in blood samples from HSCT, ERT, and untreated patients as well as age-matched controls. Long-term magnetic resonance imaging (MRI) findings were investigated in 13 treated patients (6 ERT and 7 HSCT). Mean age at HSCT was 5.5 years (range, 2 to 21.4 years) in new patients and 5.5 years (range, 10 months to 19.8 years) in published cases. None of the 27 new patients died as a direct result of the HSCT procedure. Graft-versus-host disease occurred in 8 (9%) out of 85 published cases, and 9 (8%) patients died from transplantation-associated complications. Most HSCT patients showed greater improvement in somatic features, joint movements, and activity of daily living than the ERT patients. GAG levels in blood were significantly reduced by ERT and levels were even lower after HSCT. HSCT patients showed either improvement or no progression of abnormal findings in brain MRI while abnormal findings became more extensive after ERT. HSCT seems to be more effective than ERT for MPS II in a wide range of disease manifestations and could be considered as a treatment option for this condition.


PLOS ONE | 2016

Pentosan Polysulfate: Oral Versus Subcutaneous Injection in Mucopolysaccharidosis Type I Dogs

Calogera M. Simonaro; Shunji Tomatsu; Tracy Sikora; Francyne Kubaski; Michael Frohbergh; Johana Guevara; Raymond Y. Wang; Moin Vera; Jennifer L. Kang; Lachlan J. Smith; Edward H. Schuchman; Mark E. Haskins

Background We previously demonstrated the therapeutic benefits of pentosan polysulfate (PPS) in a rat model of mucopolysaccharidosis (MPS) type VI. Reduction of inflammation, reduction of glycosaminoglycan (GAG) storage, and improvement in the skeletal phenotype were shown. Herein, we evaluate the long-term safety and therapeutic effects of PPS in a large animal model of a different MPS type, MPS I dogs. We focused on the arterial phenotype since this is one of the most consistent and clinically significant features of the model. Methodology/Principal Findings MPS I dogs were treated with daily oral or biweekly subcutaneous (subQ) PPS at a human equivalent dose of 1.6 mg/kg for 17 and 12 months, respectively. Safety parameters were assessed at 6 months and at the end of the study. Following treatment, cytokine and GAG levels were determined in fluids and tissues. Assessments of the aorta and carotid arteries also were performed. No drug-related increases in liver enzymes, coagulation factors, or other adverse effects were observed. Significantly reduced IL-8 and TNF-alpha were found in urine and cerebrospinal fluid (CSF). GAG reduction was observed in urine and tissues. Increases in the luminal openings and reduction of the intimal media thickening occurred in the carotids and aortas of PPS-treated animals, along with a reduction of storage vacuoles. These results were correlated with a reduction of GAG storage, reduction of clusterin 1 staining, and improved elastin integrity. No significant changes in the spines of the treated animals were observed. Conclusions PPS treatment led to reductions of pro-inflammatory cytokines and GAG storage in urine and tissues of MPS I dogs, which were most evident after subQ administration. SubQ administration also led to significant cytokine reductions in the CSF. Both treatment groups exhibited markedly reduced carotid and aortic inflammation, increased vessel integrity, and improved histopathology. We conclude that PPS may be a safe and useful therapy for MPS I, either as an adjunct or as a stand-alone treatment that reduces inflammation and GAG storage.


JIMD Reports | 2014

Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB

Tsutomu Shimada; Shunji Tomatsu; Robert W. Mason; Eriko Yasuda; William G. Mackenzie; Jobayer Hossain; Yuniko Shibata; Adriana M. Montaño; Francyne Kubaski; Roberto Giugliani; Seiji Yamaguchi; Yasuyuki Suzuki; Kenji E. Orii; Toshiyuki Fukao; Tadao Orii

Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.


Molecular Genetics and Metabolism | 2016

Bone mineral density in MPS IV A (Morquio syndrome type A).

Heidi H. Kecskemethy; Francyne Kubaski; H.T. Harcke; Shunji Tomatsu

Mucopolysaccharidosis IV A (MPS IV A), Morquio A, is caused by deficiency in lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which is responsible for the catabolism of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S). Accumulation of GAGs results in disrupted cartilage formation and skeletal dysplasia. In this prospective cross-sectional study, bone mineral density (BMD) of the whole body (WB), lumbar spine (LS), and lateral distal femur (LDF) was acquired by dual-energy X-ray absorptiometry (DXA) on patients with MPS IV A. Functional abilities, medical history, Tanner score, and laboratory results were reviewed. Age and sex-matched norms were used to calculate Z-scores. Participants included 18 patients (13 females; 16 were unrelated) with a mean age of 21.4years (3.3 to 40.8years). While every patient was able to bear weight, 9 were full-time ambulators. Whole-body DXA could be obtained on only 6 patients (5 full-time ambulators) because of respiratory compromise caused by the position, presence of hardware, or positioning difficulties. Mean WB Z-score was -2.0 (range-0.3 to -4.1). Technical issues invalidating LS DXA in 8 patients included kyphosis at the thoracolumbar junction resulting in overlap of vertebrae in the posterior-anterior view. Mean LS BMD Z-score in full-time ambulators was -3.4 (range-1.6 to -5.0) and in the non-/partial ambulator was -4.0 (-3.7 to -4.2). Lateral distal femur BMD was acquired on every patient, and average Z-scores were -2 or less at all sites; full-time ambulators exhibited higher BMD. In conclusion, the LDF proved to be the most feasible site to measure in patients with MPS IV A. The higher LDF values in ambulators suggest this should be a consideration in promoting bone health for this group.

Collaboration


Dive into the Francyne Kubaski's collaboration.

Top Co-Authors

Avatar

Shunji Tomatsu

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar

Robert W. Mason

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Leistner-Segal

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eriko Yasuda

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge