Frank A. Spane
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank A. Spane.
Geomicrobiology Journal | 2011
Kenneth H. Williams; Philip E. Long; James A. Davis; Michael J. Wilkins; A. Lucie N'Guessan; Carl I. Steefel; Li Yang; Darrell R. Newcomer; Frank A. Spane; Lee J. Kerkhof; Lora R. McGuinness; Richard Dayvault; Derek R. Lovley
Field biostimulation experiments at the U.S. Department of Energys Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agencys (EPA) drinking water standard (0.126 μM). During successive summer experiments – referred to as “Winchester” (2007) and “Big Rusty” (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal-reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM), and the extent to which iron reduction (“Winchester”) or sulfate reduction (“Big Rusty”) was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI); however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1–0.05 μM) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during “Big Rusty” was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration “Winchester” experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their genome during the period of optimal U(VI) removal. Gene transcript levels during “Big Rusty” were quantified for Geobacter-specific citrate synthase (gltA), with ongoing transcription during sulfate reduction indicating that members of the Geobacteraceae were still active and likely contributing to U(VI) removal. The persistence of reducible Fe(III) in sediments recovered from an area of prolonged (110-day) sulfate reduction is consistent with this conclusion. These results indicate that acetate availability and its ability to sustain the activity of iron- and uranyl-respiring Geobacter strains during sulfate reduction exerts a primary control on optimized U(VI) removal from groundwater at the Rifle IFRC site over extended time scales (>50 days).
Journal of Contaminant Hydrology | 2011
Steven B. Yabusaki; Yilin Fang; Kenneth H. Williams; Christopher J. Murray; Anderson L. Ward; Richard Dayvault; Scott R. Waichler; Darrell R. Newcomer; Frank A. Spane; Philip E. Long
Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP reaction products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions with localized effects of the fine lithofacies having the largest impact on U(VI) surface complexation. The ability to model the comprehensive biogeochemical reaction network, and spatially and temporally variable processes, properties, and conditions controlling uranium behavior during engineered bioremediation in the naturally complex Rifle IFRC subsurface system required a subsurface simulator that could use the large memory and computational performance of a massively parallel computer. In this case, the eSTOMP simulator, operating on 128 processor cores for 12h, was used to simulate the 110-day field experiment and 50 days of post-biostimulation behavior.
Archive | 2007
Bruce A. Williams; Christopher F. Brown; Wooyong Um; Michael J. Nimmons; Robert E. Peterson; Bruce N. Bjornstad; David C. Lanigan; R. Jeffrey Serne; Frank A. Spane; Mark L. Rockhold
Four new CERCLA groundwater monitoring wells were installed in the 300-FF-5 Operable Unit in FY 2006 to fulfill commitments for well installations proposed in the Hanford Federal Facility Agreement and Consent Order Milestone M-24-57. Wells were installed to collect data to determine the distribution of process uranium and other contaminants of potential concern in groundwater. These data will also support uranium contaminant transport simulations and the wells will supplement the water quality monitoring network for the 300-FF-5 OU. This report supplies the information obtained during drilling, characterization, and installation of the new groundwater monitoring wells. This document also provides a compilation of hydrogeologic, geochemical, and well construction information obtained during drilling, well development, and sample collection/analysis activities.
Other Information: PBD: 15 May 2001 | 2001
Frank A. Spane; Paul D. Thorne; Darrell R. Newcomer
This report provides the results of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, vertical flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.
Other Information: PBD: 9 Nov 2000 | 2000
Frank A. Spane; Paul D. Thorne
A number of programs have been implemented on the Hanford Site that utilize the pumping and treatment of contaminated groundwater as part of their remediation strategy. Often the treated water is reinjected into the aquifer at injection well sites. The implementation of remedial pump and treat systems, however, results in hydraulic pressure responses, both areally and vertically (i.e., with depth) within the pumped aquifer. The area within the aquifer affected by the pump and treat system (i.e., radius of influence) is commonly estimated based on detecting associated water-level responses within surrounding monitor wells. Natural external stresses, such as barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These temporal barometric effects may significantly mask water-level responses within more distant wells that are only slightly affected (< 0.10 m) by the test system. External stress effects, therefore, can lead to erroneous indications of the radius of influence of the imposed pump and treat system remediation activities and can greatly diminish the ability to analyze the associated well responses for hydraulic property characterization. When these extraneous influences are significant, adjustments or removal of the barometric effects from the test-response record may be required for quantitative hydrologic assessment. This report examines possible hydrologic effects of pump and treat remediation actions and provides a detailed analysis of water-level measurements for selected 200-ZP-1 pump and treat system monitor wells during the recent Y2K shutdown (December 1999) and restart activity (January 2000). The general findings presented in this report have universal application for unconfined and confined aquifer systems.
Ground Water | 2011
Frank A. Spane; Rob D. Mackley
Many contaminated unconfined aquifers are located in proximity to river systems. In groundwater studies, the physical presence of a river is commonly represented as a transient-head boundary that imposes hydrologic responses within the intersected unconfined aquifer. The periodic fluctuation of river-stage height at the boundary produces associated responses within the adjacent aquifer system, the magnitude of which is a function of the existing well, aquifer, boundary conditions, and characteristics of river-stage fluctuations. The presence of well responses induced by the river stage can significantly limit characterization and monitoring of remedial activities within the stress-impacted area. This article demonstrates the use of a time-domain, multiple-regression, convolution (superposition) method to develop well/aquifer river response function (RRF) relationships. Following RRF development, a multiple-regression deconvolution correction approach can be applied to remove river-stage effects from well water-level responses. Corrected well responses can then be analyzed to improve local aquifer characterization activities in support of optimizing remedial actions, assessing the area-of-influence of remediation activities, and determining mean groundwater flow and contaminant flux to the river system.
Greenhouse Gas Control Technologies 7#R##N#Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies 5– September 2004, Vancouver, Canada | 2005
Neeraj Gupta; P. E. Jagucki; Joel Sminchak; Danielle Meggyesy; Frank A. Spane; Terizhandur S. Ramakrishnan; Austin Boyd
Publisher Summary This chapter presents results from the initial field investigations from the site-characterization effort. Depending upon the geology and the reservoir characteristics, the ultimate objective for this project is to progress towards demonstration of CO2 injection in deep geological reservoirs in the region. Towards this objective, an effort was made to ensure that, if a decision is made to proceed to an injection phase, the current test well will be able to meet the relevant regulatory criteria. The results given in the chapter pertain to the assessment of the injectivity and the storage capacity. Containment evaluation is also a part of the assessment. The research presented here provides a protocol for similar characterization in deeper sedimentary basin elsewhere in the world, especially those where pre-existing information is sparse. While many of the techniques used are similar to those used in oil and gas exploration, it is noteworthy that the testing objectives are very different, with a greater emphasis on the evaluation of containment and injection potential, rather than on the presence and quantification of oil/gas reserves, and on ensuring that the drilling, testing, and well design comply with underground injection regulations. There is also a greater emphasis on collecting information that may be needed for allaying possible stakeholder concerns about the risks from carbon sequestration technologies.
Archive | 2002
Robert E. Peterson; Frank A. Spane; Khris B. Olsen; Mark D. Williams
This document presents information about the possible sources of tritium that is being detected in groundwater at well 199-K-111A, 100-K Area on the Hanford Site.
Archive | 2007
Donaldo P. Mendoza; Gregory W. Patton; Mary J. Hartman; Frank A. Spane; Mark D. Sweeney; Brad G. Fritz; Tyler J. Gilmore; Rob D. Mackley; Bruce N. Bjornstad; Ray E. Clayton
Efforts are underway to remediate strontium-laden groundwater to the Columbia River at the 100-N Area of the Hanford Site. Past practices of the 100-N reactor liquid waste disposal sites has left strontium-90 sorbed onto sediments which is a continuing source of contaminant discharge to the river. The Remediation Task of the Science and Technology Project assessed the interaction of groundwater and river water at the hyporheic zone. Limited data have been obtained at this interface of contaminant concentrations, geology, groundwater chemistry, affects of river stage and other variables that may affect strontium-90 release. Efforts were also undertaken to determine the extent, both laterally and horizontally, of the strontium-90 plume along the shoreline and to potentially find an alternative constituent to monitor strontium-90 that would be more cost effective and could possibly be done under real time conditions. A baseline of strontium-90 concentrations along the shoreline was developed to help assess remediation technologies.
Archive | 2009
Frank A. Spane; Darrell R. Newcomer
This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.