Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank-André Siebert is active.

Publication


Featured researches published by Frank-André Siebert.


Radiotherapy and Oncology | 2013

GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: an update.

Peter Hoskin; Alessandro Colombo; Ann M Henry; Peter Niehoff; Taran Paulsen Hellebust; Frank-André Siebert; György Kovács

BACKGROUND HDR afterloading brachytherapy (HDRBT) for prostate cancer is now established as an effective technique to achieve dose escalation in the radical treatment of localized prostate cancer. The previous guidelines published in 2005 from GEC ESTRO and EAU have been updated to reflect the current and emerging roles for HDRBT in prostate cancer. PATIENTS AND METHOD The indications for HDRBT in dose escalation schedules with external beam are wide ranging with all patients having localized disease eligible for this technique. Exclusion criteria are few encompassing patients medically unfit for the procedure and those with significant urinary outflow symptoms. RESULTS Recommendations for patient selection, treatment facility, implant technique, dose prescription and dosimetry reporting are given. CONCLUSIONS HDRBT in prostate cancer can be practiced effectively and safely within the context of these guidelines with the main indication being for dose escalation with external beam. HDRBT used alone is currently under evaluation and its role in focal treatment and recurrence will be areas of future development.


Radiotherapy and Oncology | 2014

Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM

Christian Kirisits; Mark J. Rivard; Dimos Baltas; Facundo Ballester; Marisol De Brabandere; Rob van der Laarse; Yury Niatsetski; P. Papagiannis; Taran Paulsen Hellebust; Jose Perez-Calatayud; Kari Tanderup; Jack Venselaar; Frank-André Siebert

Background and purpose A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire treatment course, taking into account the fractionation schedule and level of image guidance for adaptation. Conclusions This report on brachytherapy clinical uncertainties represents a working project developed by the Brachytherapy Physics Quality Assurances System (BRAPHYQS) subcommittee to the Physics Committee within GEC-ESTRO. Further, this report has been reviewed and approved by the American Association of Physicists in Medicine.


Radiotherapy and Oncology | 2014

Second primary cancers after radiation for prostate cancer: A systematic review of the clinical data and impact of treatment technique

Louise Murray; Ann M Henry; Peter Hoskin; Frank-André Siebert; Jack Venselaar

The development of a radiation induced second primary cancer (SPC) is one the most serious long term consequences of successful cancer treatment. This review aims to evaluate SPC in prostate cancer (PCa) patients treated with radiotherapy, and assess whether radiation technique influences SPC. A systematic review of the literature was performed to identify studies examining SPC in irradiated PCa patients. This identified 19 registry publications, 21 institutional series and 7 other studies. There is marked heterogeneity in published studies. An increased risk of radiation-induced SPC has been identified in several studies, particularly those with longer durations of follow-up. The risk of radiation-induced SPC appears small, in the range of 1 in 220 to 1 in 290 over all durations of follow-up, and may increase to 1 in 70 for patients followed up for more than 10 years, based on studies which include patients treated with older radiation techniques (i.e. non-conformal, large field). To date there are insufficient clinical data to draw firm conclusions about the impact of more modern techniques such as IMRT and brachytherapy on SPC risk, although limited evidence is encouraging. In conclusion, despite heterogeneity between studies, an increased risk of SPC following radiation for PCa has been identified in several studies, and this risk appears to increase over time. This must be borne in mind when considering which patients to irradiate and which techniques to employ.


Radiotherapy and Oncology | 2011

Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

Gustavo Kertzscher; Claus E. Andersen; Frank-André Siebert; Søren Kynde Nielsen; Jacob Christian Lindegaard; Kari Tanderup

BACKGROUND AND PURPOSE The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. MATERIALS AND METHODS Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al(2)O(3):C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4mm). RESULTS Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥ 5mm. CONCLUSION This phantom study demonstrates that Al(2)O(3):C real-time dosimetry can identify applicator displacements ≥ 5mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion.


Radiation Oncology | 2013

Second primary cancers after radiation for prostate cancer: a review of data from planning studies

L. Murray; A. Henry; Peter Hoskin; Frank-André Siebert; Jack Venselaar

A review of planning studies was undertaken to evaluate estimated risks of radiation induced second primary cancers (RISPC) associated with different prostate radiotherapy techniques for localised prostate cancer. A total of 83 publications were identified which employed a variety of methods to estimate RISPC risk. Of these, the 16 planning studies which specifically addressed absolute or relative second cancer risk using dose–response models were selected for inclusion within this review. There are uncertainties and limitations related to all the different methods for estimating RISPC risk. Whether or not dose models include the effects of the primary radiation beam, as well as out-of-field regions, influences estimated risks. Regarding the impact of IMRT compared to 3D-CRT, at equivalent energies, several studies suggest an increase in risk related to increased leakage contributing to out-of-field RISPC risk, although in absolute terms this increase in risk may be very small. IMRT also results in increased low dose normal tissue irradiation, but the extent to which this has been estimated to contribute to RISPC risk is variable, and may also be very small. IMRT is often delivered using 6MV photons while conventional radiotherapy often requires higher energies to achieve adequate tissue penetration, and so comparisons between IMRT and older techniques should not be restricted to equivalent energies. Proton and brachytherapy planning studies suggest very low RISPC risks associated with these techniques. Until there is sufficient clinical evidence regarding RISPC risks associated with modern irradiation techniques, the data produced from planning studies is relevant when considering which patients to irradiate, and which technique to employ.


Medical Physics | 2015

A generic high‐dose rate 192Ir brachytherapy source for evaluation of model‐based dose calculations beyond the TG‐43 formalism

Facundo Ballester; Åsa Carlsson Tedgren; Domingo Granero; Annette Haworth; Firas Mourtada; Gabriel P. Fonseca; K. Zourari; P. Papagiannis; Mark J. Rivard; Frank-André Siebert; Ron S. Sloboda; Ryan L. Smith; Rowan M. Thomson; F Verhaegen; J. Vijande; Yunzhi Ma; Luc Beaulieu

PURPOSE In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) (192)Ir source and a virtual water phantom were designed, which can be imported into a TPS. METHODS A hypothetical, generic HDR (192)Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic (192)Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra(®) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS™ ]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR (192)Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. RESULTS TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ace algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 ± 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ace at clinically relevant distances. CONCLUSIONS A hypothetical, generic HDR (192)Ir source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.


Radiotherapy and Oncology | 2017

GEC-ESTRO ACROP recommendations for head & neck brachytherapy in squamous cell carcinomas: 1st update – Improvement by cross sectional imaging based treatment planning and stepping source technology

György Kovács; Rafael Martínez-Monge; Ashwini Budrukkar; Jose Luis Guinot; Bengt Johansson; Vratislav Strnad; Janusz Skowronek; Angeles Rovirosa; Frank-André Siebert

The Head and Neck Working Group of the GEC-ESTRO (Groupe Européen de Curiethérapie - European Society for Therapeutic Radiology and Oncology) published in 2009 the consensus recommendations for low-dose rate, pulsed-dose rate and high-dose rate brachytherapy in head & neck cancers. The use of brachytherapy in combination with external beam radiotherapy and/or surgery was also covered as well as the use of brachytherapy in previously irradiated patients. Given the developments in the field, these recommendations needed to be updated to reflect up-to-date knowledge. The present update does not repeat basic knowledge which was published in the first recommendation but covers in a general part developments in (1) dose and fractionation, (2) aspects of treatment selection for brachytherapy alone versus combined BT+EBRT and (3) quality assurance issues. Detailed expert committee opinion intends to help the clinical practice in lip-, oral cavity-, oropharynx-, nasopharynx-, and superficial cancers. Different aspects of adjuvant treatment techniques and their results are discussed, as well the possibilities of salvage brachytherapy applications.


Physica Medica | 2015

Film-based delivery quality assurance for robotic radiosurgery: Commissioning and validation

Oliver Blanck; Laura Masi; Marie-Christin Damme; Guido Hildebrandt; Jürgen Dunst; Frank-André Siebert; Daniela Poppinga; Björn Poppe

PURPOSE Robotic radiosurgery demands comprehensive delivery quality assurance (DQA), but guidelines for commissioning of the DQA method is missing. We investigated the stability and sensitivity of our film-based DQA method with various test scenarios and routine patient plans. We also investigated the applicability of tight distance-to-agreement (DTA) Gamma-Index criteria. METHODS AND MATERIAL We used radiochromic films with multichannel film dosimetry and re-calibration and our analysis was performed in four steps: 1) Film-to-plan registration, 2) Standard Gamma-Index criteria evaluation (local-pixel-dose-difference ≤2%, distance-to-agreement ≤2 mm, pass-rate ≥90%), 3) Dose distribution shift until maximum pass-rate (Maxγ) was found (shift acceptance <1 mm), and 4) Final evaluation with tight DTA criteria (≤1 mm). Test scenarios consisted of purposefully introduced phantom misalignments, dose miscalibrations, and undelivered MU. Initial method evaluation was done on 30 clinical plans. RESULTS Our method showed similar sensitivity compared to the standard End-2-End-Test and incorporated an estimate of global system offsets in the analysis. The simulated errors (phantom shifts, global robot misalignment, undelivered MU) were detected by our method while standard Gamma-Index criteria often did not reveal these deviations. Dose miscalibration was not detected by film alone, hence simultaneous ion-chamber measurement for film calibration is strongly recommended. 83% of the clinical patient plans were within our tight DTA tolerances. CONCLUSION Our presented methods provide additional measurements and quality references for film-based DQA enabling more sensitive error detection. We provided various test scenarios for commissioning of robotic radiosurgery DQA and demonstrated the necessity to use tight DTA criteria.


Physics in Medicine and Biology | 2007

Quality assurance of brachytherapy afterloaders using a multi-slit phantom

P. Kohr; Frank-André Siebert

Brachytherapy is a very successful treatment option for many different tumors. Consequently the quality assurance (QA) of afterloaders is of special interest. For many quality checks verification films are essential. Because currently in many clinics the film development units are replaced by computed radiography systems, the question arises of how to perform QA for afterloaders without conventional radiography films. In this note the use of a new designed multi-slit phantom demonstrates the possibility of performing QA checks with high sensitivity computed radiography systems. Because the presented phantom allows a method for imaging the radiation source it might be useful in the development of further QA techniques.


Medical Physics | 2007

Three‐dimensional reconstruction of seed implants by randomized rounding and visual evaluation

Frank-André Siebert; Anand Srivastav; Lasse Kliemann; Helena Fohlin; György Kovács

The development of efficient 3D seed reconstruction algorithms is an ongoing and vivid research topic. Since the 1980s many publications about seed assignment were published. In this paper a novel mathematical approach is described to solve the 3D assignment problem for the reconstruction of seeds with radiographs: we present a fast linear programming approach together with afterwards applying the so-called randomized rounding scheme to compute good (possibly partial) assignments. We apply a visualization software that allows user interaction to check the solution given by the algorithm and to augment partial assignments. The second step is justified as the randomized algorithm already returns optimal solutions is many cases, and in cases with partial assignments it fails to match only a very small number of seed images. Our algorithm transfers ideas from recent breakthrough research work on the design of efficient randomized algorithms in discrete optimization and computer science to the seed reconstruction problem.

Collaboration


Dive into the Frank-André Siebert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Kirisits

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Marisol De Brabandere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Vijande

University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge