Frank Asaro
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank Asaro.
Science | 1980
Luis W. Alvarez; Walter Alvarez; Frank Asaro; Helen V. Michel
Platinum metals are depleted in the earths crust relative to their cosmic abundance; concentrations of these elements in deep-sea sediments may thus indicate influxes of extraterrestrial material. Deep-sea limestones exposed in Italy, Denmark, and New Zealand show iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given to indicate that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is suggested which accounts for the extinctions and the iridium observations. Impact of a large earth-crossing asteroid would inject about 60 times the objects mass into the atmosphere as pulverized rock; a fraction of this dust would stay in the stratosphere for several years and be distributed worldwide. The resulting darkness would suppress photosynthesis, and the expected biological consequences match quite closely the extinctions observed in the paleontological record. One prediction of this hypothesis has been verified: the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the Cretaceous and Tertiary limestones, which are chemically similar to each other. Four different independent estimates of the diameter of the asteroid give values that lie in the range 10 � 4 kilometers.
Geology | 1983
Alessandro Montanari; Richard L. Hay; Walter Alvarez; Frank Asaro; Helen V. Michel; Luis W. Alvarez; Jan Smit
Sand-size spheroids of K-feldspar in the Cretaceous-Tertiary (C-T) boundary clay at Caravaca, southern Spain, were interpreted by Smit and Klaver as having solidified from a melt resulting from the impact of a large extraterrestrial body. Sand-size spheroids of K-feldspar, glauconite, and magnetite-quartz have been found in the C-T boundary clay in northern Italy, and spheroids of K-feldspar and pyrite were found in the boundary clay at Deep Sea Drilling Project Site 465A, in the central Pacific. These spheroids have textures similar to those of rapidly crystallized feldspar and mafic silicates. They are interpreted as diagenetically altered microcrystalline spherules of basaltic composition produced by the impact of a large asteroid in an ocean basin at the end of the Cretaceous. They are analogous to the glassy microtektites produced by impacts on more siliceous target rocks. 21 references, 4 figures.
Science | 1984
Walter Alvarez; Erle G. Kauffman; Finn Surlyk; Luis W. Alvarez; Frank Asaro; Helen V. Michel
There is much evidence that the Cretaceous-Tertiary boundary was marked by a massive meteorite impact. Theoretical consideration of the consquences of such an impact predicts sharp extinctions in many groups of animals precisely at the boundary. Paleontological data clearly show gradual declines in diversity over the last 1 to 10 million years in various invertebrate groups.Reexamination of data from careful studies of the best sections shows that, in addition to undergoing the decline, four groups (ammonites, cheilostomate beyozoans, brachiopods, and bivalves) were affected by sudden truncations precisely at the iridium anomaly that marks the boundary. The paleontological record thus bears witness to terminal-Cretaceous extinctions on two time scales: a slow decline unrelated to the impact and a sharp truncation synchronous with and probably caused by the impact.
Science | 1989
Donald R. Lowe; Gary R. Byerly; Frank Asaro; Frank T. Kyte
Beds of sand-sized spherules in the 3400-million-year-old Fig Tree Group, Barberton Greenstone belt, South Africa, formed by the fall of quenched liquid silicate droplets into a range of shallow-to deep-water depositional environments. The regional extent of the layers, their compositional complexity, and lack of included volcanic debris suggest that they are not products of volcanic activity. The layers are greatly enriched in iridium and other platinum group elements in roughly chondritic proportions. Geochemical modeling based on immobile element abundances suggests that the original average spherule composition can be approximated by a mixture of fractionated tholeiitic basalt, komatiite, and CI carbonaceous chondrite. The spherules are thought to be the products of large meteorite impacts on the Archean earth.
Astrobiology | 2003
Donald R. Lowe; Gary R. Byerly; Frank T. Kyte; Alexander Shukolyukov; Frank Asaro; Alexandra Krull
Four layers, S1-S4, containing sand-sized spherical particles formed as a result of large meteorite impacts, occur in 3.47-3.24 Ga rocks of the Barberton Greenstone Belt, South Africa. Ir levels in S3 and S4 locally equal or exceed chondritic values but in other sections are at or only slightly above background. Most spherules are inferred to have formed by condensation of impact-produced rock vapor clouds, although some may represent ballistically ejected liquid droplets. Extreme Ir abundances and heterogeneity may reflect element fractionation during spherule formation, hydraulic fractionation during deposition, and/or diagenetic and metasomatic processes. Deposition of S1, S2, and S3 was widely influenced by waves and/or currents interpreted to represent impact-generated tsunamis, and S1 and S2 show multiple graded layers indicating the passage of two or more wave trains. These tsunamis may have promoted mixing within a globally stratified ocean, enriching surface waters in nutrients for biological communities. S2 and S3 mark the transition from the 300-million-year-long Onverwacht stage of predominantly basaltic and komatiitic volcanism to the late orogenic stage of greenstone belt evolution, suggesting that regional and possibly global tectonic reorganization resulted from these large impacts. These beds provide the oldest known direct record of terrestrial impacts and an opportunity to explore their influence on early life, crust, ocean, and atmosphere. The apparent presence of impact clusters at 3.26-3.24 Ga and approximately 2.65-2.5 Ga suggests either spikes in impact rates during the Archean or that the entire Archean was characterized by terrestrial impact rates above those currently estimated from the lunar cratering record.
Science | 1982
Walter Alvarez; Frank Asaro; Helen V. Michel; Luis W. Alvarez
An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.
Geology | 1992
Walter Alvarez; Jan Smit; William Lowrie; Frank Asaro; Stanley V. Margolis; Philippe Claeys; Miriam Kastner; Alan R. Hildebrand
Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.
Palaeogeography, Palaeoclimatology, Palaeoecology | 1997
Birger Schmitz; Frank Asaro; Eustoquio Molina; Simonetta Monechi; Katharina von Salis; Robert Speijer
In the expanded upper Paleocene-lower Eocene section (~ 30 m of Zone P5 sediments) at Zumaya, northern Spain, the highest occurrence of many late Paleocene deep-sea benthic foraminifera species (~40% extinction), coincides with a transition from marl to calcite-free clay. Our high-resolution studies (chemical elements, 613C, 6180, calcareous nannofossils, planktic and benthic foraminifera) show that below the marl-clay transition there is a 40-50 cm thick interval (corresponding to 10-20 kyr) containing a detailed record of a gradual succession of faunal and geochemical events culminating in the benthic extinctions. Planktic foraminiferal and nannofossil changes (e.g., the onset of demise in Fasciculithus genus) occur a few meters below the marl-clay transition. In the limestone 50 cm below the base of the clay, a prominent glauconite maximum indicates that sea-floor oxygenation suddenly decreased. Glauconite continues to be common until the onset of clay deposition. A whole-rock negative 613C shift (1.6%0), most likely reflecting an original sea-water trend, is gradually developed over the 40 cm of greenish brown marls immediately below the clay. At the base of these marls there is a small, significant iridium anomaly of 133 ppt Ir compared with an average background of 38 ppt. In the marls the demise of the Fasciculithus species accelerates, Gavelinella beccariiformis becomes extinct, and the abundance of Acarinina species begins to increase. The superjacent 4 m of clay is devoid of original calcite in its lower part and has a low calcareous content higher up. At calcareous levels in the clay an unusual planktic foraminifera fauna occurs, dominated by Acarinina species. When marl deposition returns, 613C gradually increases and then stabilizes at values about 0.5%o lower than before the isotopic excursion. The 613C excursion spans in total 5 m, probably corresponding to 200-400 kyr. The fasciculiths disappear shortly after the stabilization of 613C. Here we also present a whole-rock 6~3C profile through the entire Paleocene section at Zumaya. The profile is very similar to previous profiles registered in well preserved deep-sea material, suggesting that whole-rock 613C at Zumaya can be used for correlation.
Science | 1984
Walter Alvarez; Luis W. Alvarez; Frank Asaro; Helen V. Michel
Evidence indicates that the Cretaceous-Tertiary boundary is very sharp, and, within the limits of resolution, it is apparently synchronous at the various boundary localities. Arguments to the contrary, particularly those of Officer and Darke, are shown to invalid.
Science | 1984
Miriam Kastner; Frank Asaro; Helen V. Michel; Walter Alvarez; Luis W. Alvarez
Results of detailed mineralogical, chemical, and oxygen isotope analyses of the clay minerals and zeolites from two Cretaceous-Tertiary (K/T) boundary regions, Stevns Klint, Denmark, and Deep Sea Drilling Project (DSDP) Hole 465A in the north central Pacific Ocean, are presented. In the central part of the Stevns Klint K/T boundary layer, the only clay mineral detected by x-ray diffraction is a pure smectite with > 95 percent expandable layers. No detrital clay minerals or quartz were observed in the clay size fraction in these beds, whereas the clay minerals above and below the boundary layer are illite and mixed-layer smectite-illite of detrital origin as well as quartz. The mineralogical purity of the clay fraction, the presence of smectite only at the boundary, and the δ18O value of the smectite (27.2 � 0.2 per mil) suggest that it formed in situ by alteration of glass. Formation from impact rather than from volcanic glass is supported by its major element chemistry. The high content of iridium and other siderophile elements is not due to the cessation of calcium carbonate deposition and resulting slow sedimentation rates. At DSDP Hole 465A, the principal clay mineral in the boundary zone (80 to 143 centimeters) is a mixed-layer smectite-illite with ≥90 percent expandable layers, accompanied by some detrital quartz and small amounts of a euhedral authigenic zeolite (clinoptilolite). The mixed-layer smectite-illite from the interval 118 to 120 centimeters in the zone of high iridium abundance has a very low rare earth element content; the negative cerium anomaly indicates formation in the marine environment. This conclusion is corroborated by the δ18O value of this clay mineral (27.1 � 0.2 per mil). Thus, this mixed-layer smectite-illite formed possibly from the same glass as the K/T boundary smectite at Stevns Klint, Denmark.