Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank B. Dazzo is active.

Publication


Featured researches published by Frank B. Dazzo.


Applied and Environmental Microbiology | 2000

Flexible Community Structure Correlates with Stable Community Function in Methanogenic Bioreactor Communities Perturbed by Glucose

Ana S. Fernandez; Syed A. Hashsham; Sherry L. Dollhopf; Lutgarde Raskin; Olga Glagoleva; Frank B. Dazzo; Robert F. Hickey; Craig S. Criddle; James M. Tiedje

ABSTRACT Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDRA), and partial sequencing of SSU rDNA clones. One set of replicated communities, designated the high-spirochete (HS) set, was characterized by good replicability, a high proportion of spiral and short thin rod morphotypes, a dominance of spirochete-related SSU rDNA genes, and a high percentage ofMethanosarcina-related SSU rRNA. The second set of communities, designated the low-spirochete (LS) set, was characterized by incomplete replicability, higher morphotype diversity dominated by cocci, a predominance of Streptococcus-related and deeply branching Spirochaetales-related SSU rDNA genes, and a high percentage of Methanosaeta-related SSU rRNA. In the HS communities, glucose perturbation caused a dramatic shift in the relative abundance of fermentative bacteria, with temporary displacement of spirochete-related ribotypes byEubacterium-related ribotypes, followed by a return to the preperturbation community structure. The LS communities were less perturbed, with Streptococcus-related organisms remaining prevalent after the glucose shock, although changes in the relative abundance of minor members were detected by morphotype analysis. A companion paper demonstrates that the more stable LS communities were less functionally stable than the HS communities (S. A. Hashsham, A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje, and C. S. Criddle, Appl. Environ. Microbiol. 66:4050–4057, 2000).


Plant and Soil | 1997

Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth

Youssef G. Yanni; Rizk Rizk; V. Corich; Andrea Squartini; K. Ninke; Saleela Philip-Hollingsworth; Guy G. Orgambide; F. J. de Bruijn; Jon R. Stoltzfus; Daniel H. Buckley; Thomas M. Schmidt; Pedro F. Mateos; J. K. Ladha; Frank B. Dazzo

For over 7 centuries, production of rice (Oryza sativa L.) in Egypt has benefited from rotation with Egyptian berseem clover (Trifolium alexandrinum). The nitrogen supplied by this rotation replaces 25- 33% of the recommended rate of fertilizer-N application for rice production. This benefit to the rice cannot be explained solely by an increased availability of fixed N through mineralization of N- rich clover crop residues. Since rice normally supports a diverse microbial community of internal root colonists, we have examined the possibility that the clover symbiont, Rhizobium leguminosarum bv. trifolii colonizes rice roots endophytically in fields where these crops are rotated, and if so, whether this novel plant-microbe association benefits rice growth. MPN plant infection studies were performed on macerates of surface-sterilized rice roots inoculated on T. alexandrinum as the legume trap host. The results indicated that the root interior of rice grown in fields rotated with clover in the Nile Delta contained ∼106 clover-nodulating rhizobial endophytes g fresh weight of root. Plant tests plus microscopical, cultural, biochemical, and molecular structure studies indicated that the numerically dominant isolates of clover-nodulating rice endophytes represent 3 – 4 authentic strains of R. leguminosarum bv. trifolii that were Nod Fix on berseem clover. Pure cultures of selected strains were able to colonize the interior of rice roots grown under gnotobiotic conditions. These rice endophytes were reisolated from surface-sterilized roots and shown by molecular methods to be the same as the original inoculant strains, thus verifying Kochs postulates. Two endophytic strains of R. leguminosarum bv. trifolii significantly increased shoot and root growth of rice in growth chamber experiments, and grain yield plus agronomic fertilizer N-use efficiency of Giza-175 hybrid rice in a field inoculation experiment conducted in the Nile Delta. Thus, fields where rice has been grown in rotation with clover since antiquity contain Fix strains of R. leguminosarum bv. trifolii that naturally colonize the rice root interior, and these true rhizobial endophytes have the potential to promote rice growth and productivity under laboratory and field conditions.


Applied and Environmental Microbiology | 2005

Ascending Migration of Endophytic Rhizobia, from Roots to Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology

Feng Chi; Shihua Shen; Hai-Ping Cheng; Yu Xiang Jing; Youssef G. Yanni; Frank B. Dazzo

ABSTRACT Rhizobia, the root-nodule endosymbionts of leguminous plants, also form natural endophytic associations with roots of important cereal plants. Despite its widespread occurrence, much remains unknown about colonization of cereals by rhizobia. We examined the infection, dissemination, and colonization of healthy rice plant tissues by four species of gfp-tagged rhizobia and their influence on the growth physiology of rice. The results indicated a dynamic infection process beginning with surface colonization of the rhizoplane (especially at lateral root emergence), followed by endophytic colonization within roots, and then ascending endophytic migration into the stem base, leaf sheath, and leaves where they developed high populations. In situ CMEIAS image analysis indicated local endophytic population densities reaching as high as 9 × 1010 rhizobia per cm3 of infected host tissues, whereas plating experiments indicated rapid, transient or persistent growth depending on the rhizobial strain and rice tissue examined. Rice plants inoculated with certain test strains of gfp-tagged rhizobia produced significantly higher root and shoot biomass; increased their photosynthetic rate, stomatal conductance, transpiration velocity, water utilization efficiency, and flag leaf area (considered to possess the highest photosynthetic activity); and accumulated higher levels of indoleacetic acid and gibberellin growth-regulating phytohormones. Considered collectively, the results indicate that this endophytic plant-bacterium association is far more inclusive, invasive, and dynamic than previously thought, including dissemination in both below-ground and above-ground tissues and enhancement of growth physiology by several rhizobial species, therefore heightening its interest and potential value as a biofertilizer strategy for sustainable agriculture to produce the worlds most important cereal crops.


Australian Journal of Plant Physiology | 2001

The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots

Youssef G. Yanni; Rizk Rizk; Faiza K. Abd El-Fattah; Andrea Squartini; Viviana Corich; Alessio Giacomini; Frans J. de Bruijn; J. L. W. Rademaker; Jaime Maya-Flores; Peggy Ostrom; Maria Vega-Hernandez; Rawle I. Hollingsworth; Eustoquio Martínez-Molina; Pedro F. Mateos; Encarna Velázquez; Judith Wopereis; Eric W Triplett; Mercedes Umali-Garcia; Juliet A. Anarna; Barry Rolfe; Jadish K. Ladha; James L. Hill; Rajni Mujoo; Perry K.W. Ng; Frank B. Dazzo

his paper summarizes a multinational collaborative project to search for natural, intimate associations between rhizobia and rice (Oryza sativa L.), assess their impact on plant growth, and exploit those combinations that can enhance grain yield with less dependence on inputs of nitrogen (N) fertilizer. Diverse, indigenous populations of Rhizobium leguminosarum bv. trifolii (the clover root-nodule endosymbiont) intimately colonize rice roots in the Egyptian Nile delta where this cereal has been rotated successfully with berseem clover (Trifolium alexandrinum L.) since antiquity. Laboratory and greenhouse studies have shown with certain rhizobial strain-rice variety combinations that the association promotes root and shoot growth thereby significantly improving seedling vigour that carries over to significant increases in grain yield at maturity. Three field inoculation trials in the Nile delta indicated that a few strain-variety combinations significantly increased rice grain yield, agronomic fertilizer N-use efficiency and harvest index. The benefits of this association leading to greater production of vegetative and reproductive biomass more likely involve rhizobial modulation of the plants root architecture for more efficient acquisition of certain soil nutrients [e.g. N, phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), sodium (Na) and molybdenum (Mo)] rather than biological N 2 fixation.


Applied and Environmental Microbiology | 2002

A New Species of Devosia That Forms a Unique Nitrogen-Fixing Root-Nodule Symbiosis with the Aquatic Legume Neptunia natans (L.f.) Druce

Raúl Rivas; Encarna Velázquez; Anne Willems; Nieves Vizcaíno; Nanjappa S. Subba-Rao; Pedro F. Mateos; M. Gillis; Frank B. Dazzo; Eustoquio Martínez-Molina

ABSTRACT Rhizobia are the common bacterial symbionts that form nitrogen-fixing root nodules in legumes. However, recently other bacteria have been shown to nodulate and fix nitrogen symbiotically with these plants. Neptunia natans is an aquatic legume indigenous to tropical and subtropical regions and in African soils is nodulated by Allorhizobium undicola. This legume develops an unusual root-nodule symbiosis on floating stems in aquatic environments through a unique infection process. Here, we analyzed the low-molecular-weight RNA and 16S ribosomal DNA (rDNA) sequence of the same fast-growing isolates from India that were previously used to define the developmental morphology of the unique infection process in this symbiosis with N. natans and found that they are phylogenetically located in the genus Devosia, not Allorhizobium or Rhizobium. The 16S rDNA sequences of these two Neptunia-nodulating Devosia strains differ from the only species currently described in that genus, Devosia riboflavina. From the same isolated colonies, we also located their nodD and nifH genes involved in nodulation and nitrogen fixation on a plasmid of approximately 170 kb. Sequence analysis showed that their nodD and nifH genes are most closely related to nodD and nifH of Rhizobium tropici, suggesting that this newly described Neptunia-nodulating Devosia species may have acquired these symbiotic genes by horizontal transfer.


Molecular Plant-microbe Interactions | 1998

Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus

Krzysztof Szczyglowski; Robert S. Shaw; Judith Wopereis; Sue Copeland; Dirk Hamburger; Beth Kasiborski; Frank B. Dazzo; Frans J. de Bruijn

A detailed microscopical analysis of the morphological features that distinguish different developmental stages of nodule organogenesis in wild-type Lotus japonicus ecotype Gifu B-129-S9 plants was performed, to provide the necessary framework for the evaluation of altered phenotypes of L. japonicus symbiotic mutants. Subsequently, chemical ethyl methanesulfonate (EMS) mutagenesis of L. japonicus was carried out. The analysis of approximately 3,000 M1 plants and their progeny yielded 20 stable L. japonicus symbiotic variants, consisting of at least 14 different symbiosis-associated loci or complementation groups. Moreover, a mutation affecting L. japonicus root development was identified that also conferred a hypernodulation response when a line carrying the corresponding allele (LjEMS102) was inoculated with rhizobia. The phenotype of the LjEMS102 line was characterized by the presence of nodule structures covering almost the entire root length (Nod++), and by a concomitant inhibition of both root and st...


Applied and Environmental Microbiology | 2000

Parallel Processing of Substrate Correlates with Greater Functional Stability in Methanogenic Bioreactor Communities Perturbed by Glucose

Syed A. Hashsham; Ana S. Fernandez; Sherry L. Dollhopf; Frank B. Dazzo; Robert F. Hickey; James M. Tiedje; Craig S. Criddle

ABSTRACT Parallel processing is more stable than serial processing in many areas that employ interconnected activities. This hypothesis was tested for microbial community function using two quadruplicate sets of methanogenic communities, each set having substantially different populations. The two communities were maintained at a mean cell residence time of 16 days and a mean glucose loading rate of 0.34 g/liter-day in variable-volume reactors. To test stability to perturbation, they were subjected to an instantaneous glucose pulse that resulted in a 6.8-g/liter reactor concentration. The pattern of accumulated products in response to the perturbation was analyzed for various measures of functional stability, including resistance, resilience, and reactivity for each product. A new stability parameter, “moment of amplification envelope,” was used to compare the soluble compound stability. These parameters indicated that the communities with predominantly parallel substrate processing were functionally more stable in response to the perturbation than the communities with predominantly serial substrate processing. The data also indicated that there was good replication of function under perturbed conditions; the degrees of replication were 0.79 and 0.83 for the two test communities.


Systematic and Applied Microbiology | 2003

Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India

Raúl Rivas; Anne Willems; Nanjappa S. Subba-Rao; Pedro F. Mateos; Frank B. Dazzo; Reiner M. Kroppenstedt; Eustoquio Martínez-Molina; Monique Gillis; Encarna Velázquez

Neptunia natans is a unique aquatic legume indigenous to tropical and sub-tropical regions and is nodulated symbiotically by rhizobia using an unusual infection process unlike any previously described. Previously, isolates of neptunia-nodulating rhizobia from Senegal were characterized as Allorhizobium undicola. Here we report on a different group of neptunia-nodulating rhizobia isolated from India. Sequencing of the 16S rDNA gene from two of these Indian isolates (strains J1T and J2) show that they belong in the genus Devosia rather than Allorhizobium. Currently, the only described Devosia species is D. riboflavina (family Hyphomicrobiaceae, order Rhizobiales). The complete 16S rDNA sequences of strains J1T and J2 are 95.9% homologous to the type strain, D. riboflavina LMG 2277T, suggesting that these neptunia-nodulating strains from India belong to a new Devosia species. This hypothesis was confirmed by further studies of polyphasic taxonomy (DNA-DNA hybridisation, TP-RAPD patterns, SDS-PAGE of cellular proteins, 16S rDNA RFLP patterns, carbon source utilisation, cellular fatty acid analysis and other phenotypic characterisations), all of which support the proposal that these neptunia-nodulating strains constitute a new Devosia species, which we name Devosia neptuniae sp. nov. These gram negative, strictly aerobic short rods are motile by a subpolar flagellum, positive for catalase, oxidase, urease and beta-galactosidase, can utilise several carbohydrates (but not organic acids) as carbon sources and contain C18:0 3-OH, cis-7 C18:1 11-methyl and cis-7 C18:1 as their major cellular fatty acids. Unlike D. riboflavina, the longer-chain C24:1 3-OH and C26:1 3-OH hydroxy fatty acids are not detected. The type strain of D. neptuniae is LMG 21357T (CECT 5650T). Assignment of this new taxon represents the fourth example in the literature of a non-rhizobial genus of bacteria capable of forming a bonafide dinitrogen-fixing root-nodule symbiosis with legume plants.


FEMS Microbiology Ecology | 2008

Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes

Rosella Muresu; Elisa Polone; Leonardo Sulas; Barbara Baldan; Alessandra Tondello; Giuseppe Delogu; Pietro Antonio Cappuccinelli; Sara Alberghini; Yacine Benhizia; Hayet Benhizia; Ammar Benguedouar; Bruno Mori; Roberto Calamassi; Frank B. Dazzo; Andrea Squartini

A previous analysis showed that Gammaproteobacteria could be the sole recoverable bacteria from surface-sterilized nodules of three wild species of Hedysarum. In this study we extended the analysis to eight Mediterranean native, uninoculated legumes never previously investigated regarding their root-nodule microsymbionts. The structural organization of the nodules was studied by light and electron microscopy, and their bacterial occupants were assessed by combined cultural and molecular approaches. On examination of 100 field-collected nodules, culturable isolates of rhizobia were hardly ever found, whereas over 24 other bacterial taxa were isolated from nodules. None of these nonrhizobial isolates could nodulate the original host when reinoculated in gnotobiotic culture. Despite the inability to culture rhizobial endosymbionts from within the nodules using standard culture media, a direct 16S rRNA gene PCR analysis revealed that most of these nodules contained rhizobia as the predominant population. The presence of nodular endophytes colocalized with rhizobia was verified by immunofluorescence microscopy of nodule sections using an Enterobacter-specific antibody. Hypotheses to explain the nonculturability of rhizobia are presented, and pertinent literature on legume endophytes is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots

Marta Robledo; José I. Jiménez-Zurdo; Encarnación Velázquez; M. E. Trujillo; J. L. Zurdo-Piñeiro; M. H. Ramírez-Bahena; B. Ramos; J. M. Díaz-Mínguez; Frank B. Dazzo; Eustoquio Martínez-Molina; Pedro F. Mateos

The rhizobia–legume, root-nodule symbiosis provides the most efficient source of biologically fixed ammonia fertilizer for agricultural crops. Its development involves pathways of specificity, infectivity, and effectivity resulting from expressed traits of the bacterium and host plant. A key event of the infection process required for development of this root-nodule symbiosis is a highly localized, complete erosion of the plant cell wall through which the bacterial symbiont penetrates to establish a nitrogen-fixing, intracellular endosymbiotic state within the host. This process of wall degradation must be delicately balanced to avoid lysis and destruction of the host cell. Here, we describe the purification, biochemical characterization, molecular genetic analysis, biological activity, and symbiotic function of a cell-bound bacterial cellulase (CelC2) enzyme from Rhizobium leguminosarum bv. trifolii, the clover-nodulating endosymbiont. The purified enzyme can erode the noncrystalline tip of the white clover host root hair wall, making a localized hole of sufficient size to allow wild-type microsymbiont penetration. This CelC2 enzyme is not active on root hairs of the nonhost legume alfalfa. Microscopy analysis of the symbiotic phenotypes of the ANU843 wild type and CelC2 knockout mutant derivative revealed that this enzyme fulfils an essential role in the primary infection process required for development of the canonical nitrogen-fixing R. leguminosarum bv. trifolii-white clover symbiosis.

Collaboration


Dive into the Frank B. Dazzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge