Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Corwin is active.

Publication


Featured researches published by Frank Corwin.


Bioconjugate Chemistry | 2010

High Relaxivity Trimetallic Nitride (Gd3N) Metallofullerene MRI Contrast Agents with Optimized Functionality

Jianfei Zhang; Panos P. Fatouros; Chunying Shu; Jonathan Reid; Lesley Shantell Owens; Ting Cai; Harry W. Gibson; Gary L. Long; Frank Corwin; Zhi-Jian Chen; Harry C. Dorn

Water-soluble poly(ethylene glycol) (PEG) functionalized and hydroxylated endohedral trimetallic nitride metallofullerene derivatives, Gd(3)N@C(80)[DiPEG(OH)(x)], have been synthesized and characterized. The (1)H MRI relaxivities in aqueous solution were measured for the derivatives with four different molecular weights of PEG (350-5000 Da) at 0.35, 2.4, and 9.4 T. The 350/750 Da PEG derivatives have the highest relaxivities among the derivatives, 237/232 mM(-1) s(-1) for r(1) and 460/398 mM(-1) s(-1) for r(2) (79/77 mM(-1) s(-1) and 153/133 mM(-1) s(-1) based on Gd(3+) ion), respectively, at a clinical-range magnetic field of 2.4 T. These represent some of the highest relaxivities reported for commercial or investigational MRI contrast agents. Dynamic light scattering results confirm a larger average size for 350/750 Da PEGs derivatives (95/96 nm) relative to longer chain length derivatives, 5000 Da PEG derivatives (37 nm). Direct infusion of the optimized 350 Da PEG derivatives into live tumor-bearing rat brains demonstrated an initial uniform distribution, and hence, the potential for effective brachytherapy applications when the encapsulated Gd(3+) ions are replaced with radioactive (177)Lu.


Bioconjugate Chemistry | 2009

Facile Preparation of a New Gadofullerene-Based Magnetic Resonance Imaging Contrast Agent with High 1H Relaxivity

Chunying Shu; Frank Corwin; Jianfei Zhang; Zhi-Jian Chen; Jonathan Reid; Minghao Sun; Wei Xu; Jae Hyun Sim; Chunru Wang; Panos P. Fatouros; Alan R. Esker; Harry W. Gibson; Harry C. Dorn

A new magnetic resonance imaging (MRI) contrast agent based on the trimetallic nitride templated (TNT) metallofullerene Gd(3)N@C(80) was synthesized by a facile method in high yield. The observed longitudinal and transverse relaxivities r(1) and r(2) for water hydrogens in the presence of the water-soluble gadofullerene 2 Gd(3)N@C(80)(OH)(approximately 26)(CH(2)CH(2)COOM)(approximately 16) (M = Na or H) are 207 and 282 mM(-1) s(-1) (per C(80) cage) at 2.4 T, respectively; these values are 50 times larger than those of Gd(3+) poly(aminocarboxylate) complexes, such as commercial Omniscan and Magnevist. This high (1)H relaxivity for this new hydroxylated and carboxylated gadofullerene derivative provides high signal enhancement at significantly lower Gd concentration as demonstrated by in vitro and in vivo MRI studies. Dynamic light scattering data reveal a unimodal size distribution with an average hydrodynamic radius of ca. 78 nm in pure water (pH = 7), which is significantly different from other hydroxylated or carboxylated fullerene and metallofullerene derivatives reported to date. Agarose gel infusion results indicate that the gadofullerene 2 displayed diffusion properties different from those of commercial Omniscan and those of PEG5000 modified Gd(3)N@C(80). The reactive carboxyl functionality present on this highly efficient contrast agent may also serve as a precursor for biomarker tissue-targeting purposes.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for targeting and imaging glial tumors.

Helen L. Fillmore; Michael D. Shultz; Scott C. Henderson; Patricia S. Cooper; William C. Broaddus; Zhi-Jian Chen; Chunying Shu; Jianfei Zhang; Jiechao Ge; Harry C. Dorn; Frank Corwin; Jerry I. Hirsch; John D. Wilson; Panos P. Fatouros

BACKGROUND Glioblastoma multiforme is the most common and most lethal primary brain tumor in humans, with median survival of approximately 1 year. Owing to the ability of glioma cells to aggressively infiltrate normal brain tissue and survive exposure to current adjuvant therapies, there is a great need for specific targeted nanoplatforms capable of delivering both therapeutic and imaging agents directly to invasive tumor cells. METHOD Gadolinium-containing endohedral fullerenes, highly efficient contrast agents for MRI, were functionalized and conjugated with a tumor-specific peptide and assessed for their ability to bind to glioma cells in vitro. RESULTS We report the successful conjugation of the carboxyl functionalized metallofullerene Gd(3)N@C(80)(OH)(-26)(CH(2)CH(2)COOH)(-16) to IL-13 peptides and the successful targeting ability towards brain tumor cells that overexpress the IL-13 receptor (IL-13Rα2). CONCLUSION These studies demonstrate that IL-13 peptide-conjugated gadolinium metallofullerenes could serve as a platform to deliver imaging and therapeutic agents to tumor cells.


Nano Letters | 2010

In Vitro and in Vivo Studies of Single-Walled Carbon Nanohorns with Encapsulated Metallofullerenes and Exohedrally Functionalized Quantum Dots

Jianfei Zhang; Jiechao Ge; Michael D. Shultz; Eunna Chung; Gurpreet Singh; Chunying Shu; Panos P. Fatouros; Scott C. Henderson; Frank Corwin; David B. Geohegan; Alex A. Puretzky; Christopher M. Rouleau; Karren L. More; Christopher G. Rylander; Marissa Nichole Rylander; Harry W. Gibson; Harry C. Dorn

Single-walled carbon nanohorns (SWNHs) are new carbonaceous materials. In this paper, we report the first successful preparation of SWNHs encapsulating trimetallic nitride template endohedral metallofullerenes (TNT-EMFs). The resultant materials were functionalized by a high-speed vibration milling method and conjugated with CdSe/ZnS quantum dots (QDs). The successful encapsulation of TNT-EMFs and external functionalization with QDs provide a dual diagnostic platform for in vitro and in vivo biomedical applications of these new carbonaceous materials.


Journal of Neurotrauma | 2001

Contrasting Effects of Dopamine Therapy in Experimental Brain Injury

Andrew Beaumont; Koji Hayasaki; Anthony Marmarou; Pál Barzó; Panos P. Fatouros; Frank Corwin

Management of cerebral perfusion pressure (CPP) is thought to be important for the treatment of traumatic brain injury (TBI). Vasopressors have been advocated as a method of increasing mean arterial blood pressure (mABP) and cerebral perfusion pressure (CPP) in the face of rising intracranial pressure (ICP). There are unresolved issues and theoretical risks about this therapy. This study therefore examined the effects of dopamine on physiological and MRI/MRS parameters in (1) a rodent model of rapidly rising intracranial pressure, caused by diffuse injury with secondary insult and (2) a model of cortical contusion. Dopamine was capable of restoring CPP in the model of rapidly rising ICP. This CPP restoration was associated with a partial restoration of CBF. Two profiles of change in the Apparent Diffusion Coefficient of water (ADCw) were seen; one in which ADCw recovered to baseline, and one in which ADCw remained persistently low. Dopamine did not alter these profiles. MRI assessed tissue water content was increased four hours after injury and dopamine increased cerebral water content in both subgroups of injury; significantly in the group with a persistently low ADCw (p < 0.01). In contusional injury, dopamine significantly worsened edema in both the ipsi- and contralateral hippocampus and temporal cortex. This occurred in the absence of ADCw changes, except in the contralateral hippocampus, where both water content and ADCw values rose with treatment, suggesting extracellular accumulation of water. In conclusion, although dopamine is capable of partially restoring CBF after injury, situations exist in which dopamine therapy worsens the swelling process. It is possible therefore that subgroups of patients exist who experience adverse effects of vasopressor treatment, and consequently the effects of vasopressor therapy in the clinical setting need to be more carefully evaluated.


Neurological Research | 2000

Acute and late changes in N-acetyl-aspartate following diffuse axonal injury in rats: an MRI spectroscopy and microdialysis study.

Beat Alessandri; Rim Al-Samsam; Frank Corwin; Panos P. Fatouros; Harold F. Young; Ross Bullock

Abstract N-acetyl-aspartate (NAA) measured by proton nuclear magnetic resonance spectroscopy (1 H-NMR) has been used as a marker of neuronal injury in many cerebral pathologies. Therefore, we evaluate the roles of microdialysis vs. 1H-NMR as techniques to assess NAA (NAAd; NAA/Creatine ratio) in the living brain, and compare the results with whole brain NAA (NAAJ, analyzed by HPLC after diffuse traumatic brain injury (TBI). Acute (4 h post-injury survival) and late (48 h survival) changes were studied in a sham-operated group (Sham, n = 4), and two injured groups (TBI/4 h, n = 8; TBI/48 h, n = 7). Baseline NAAd was 8.17±1 iM, and there was no significant difference between groups. There was only a small (twice of control), but transient increase in NAAd in the TBI/4 h group after trauma. Baseline NAA/Cr ratio was 1.35± 0.2, which did not change significantly between baseline, 1, 2, 3, 4 and 48 h or between groups after TBI. Whole brain NAAW (baseline 8.5± 0.5 mmol kg~ wet weight) did not differ significantly between groups before and after TBI. Diffuse TBI did not produce long-term changes in NAA, assessed by three different methods. These results may indicate that NAA is not a sensitive marker of the severity of diffuse axonal damage. However, further studies are needed to evaluate whether confounding factors such as microdialysis probe, voxel position and non-regional tissue homogenization might have influenced our data. [Neurol Res 2000; 22: 705-712]


Physics in Medicine and Biology | 2010

Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

Peter J. Haar; William C. Broaddus; Zhi-jian Chen; Panos P. Fatouros; George T. Gillies; Frank Corwin

A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)(-1) in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.


Physiological Measurement | 2010

Quantification of convection-enhanced delivery to the ischemic brain

Peter J. Haar; William C. Broaddus; Zhi-jian Chen; Panos P. Fatouros; George T. Gillies; Frank Corwin

Convection-enhanced delivery (CED) could have clinical application in the delivery of neuroprotective agents following ischemic stroke. However, ischemic brain tissue changes such as cytotoxic edema, in which cellular swelling decreases the fractional volume of the extracellular space, would be expected to significantly alter the distribution of neuroprotective agents delivered by CED. We sought to predict and characterize these effects using the magnetic resonance contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a model therapeutic agent. CED was observed using MRI in a normal rat brain and in a middle cerebral artery (MCA) occlusion rat model of brain ischemia. Gd-DTPA was infused to the caudate putamen in the normal rat (n = 6) and MCA occlusion model (n = 6). In each rat, baseline apparent diffusion coefficient images were acquired prior to infusion, and T1 maps were then acquired 13 times throughout the duration of the experiment. These T1 maps were used to compute Gd-DTPA concentrations throughout each brain. In the MCA occlusion group, CED delivered Gd-DTPA to a comparatively larger volume with lower average tissue concentrations. Following the infusion, the total content of Gd-DTPA decreased more slowly in the MCA occlusion group than in the normal group. This quantitative characterization confirms that edematous ischemic tissue changes alter the distribution of agents by CED. These findings may have important implications for CED in the treatment of brain injury, and will assist in future efforts to model the distribution of therapeutic agents.


Acta neurochirurgica | 2000

Comparison of NAA Measures by MRS and HPLC

Panos P. Fatouros; D. L. Heath; A. Beaumont; Frank Corwin; Sabina Signoretti; R. H. AL-Samsam; B. Alessandri; P. Lazzarino; R. Vagnozzi; Barbara Tavazzi; Ross Bullock; Anthony Marmarou

This work investigates the accuracy of an in vivo estimation of absolute N-acetyl aspartate (NAA) concentrations by magnetic resonance spectroscopy (MRS) using cerebral water as an internal reference standard. Single-voxel, proton spectroscopy was carried out in two groups of rats (normal and diffuse head injury), using a PRESS sequence with TR = 3 s, TE = 135 ms. Fully relaxed water spectra and water-suppressed proton spectra were obtained from a 7 x 5 x 5 mm3 volume of tissue. MRI-based brain water content measurements were also performed. Following MRS, HPLC determinations of NAA were carried out. In the normal rats the MRS yielded 10.98 +/- 0.83 mmol/kg w.w. vs 10.76 +/- 0.76 for HPLC with a mean absolute difference of 0.8. In the injured rats the corresponding results were 9.41 +/- 1.78 (MRS) and 8.16 +/- 0.77 (HPLC) with a mean absolute difference of 1.66. The in vivo absolute method accurately documented the temporal NAA changes compared to the NAA/Cr approach.


Journal of Biological Chemistry | 2015

Astrocyte elevated gene-1 (AEG-1) regulates lipid homeostasis

Chadia L. Robertson; Jyoti Srivastava; Ayesha Siddiq; Rachel Gredler; Luni Emdad; Devaraja Rajasekaran; Maaged Akiel; Xue-Ning Shen; Frank Corwin; Gobalakrishnan Sundaresan; Jamal Zweit; Colleen M. Croniger; Xiaoli Gao; Shobha Ghosh; Philip B. Hylemon; Mark A. Subler; Jolene J. Windle; Paul B. Fisher; Devanand Sarkar

Background: The physiological function of the oncogene astrocyte elevated gene-1 (AEG-1) was analyzed using a knock-out mouse (AEG-1KO). Results: The AEG-1KO mouse shows a lean phenotype, which may be due to decreased intestinal fat absorption because of hyperactivation of LXR and PPARα. Conclusion: A novel role of AEG-1 is identified, regulating lipid metabolism. Significance: AEG-1 may play a role in regulating obesity and its associated disorders. Astrocyte elevated gene-1 (AEG-1), also known as MTDH (metadherin) or LYRIC, is an established oncogene. However, the physiological function of AEG-1 is not known. To address this question, we generated an AEG-1 knock-out mouse (AEG-1KO) and characterized it. Although AEG-1KO mice were viable and fertile, they were significantly leaner with prominently less body fat and lived significantly longer compared with wild type (WT). When fed a high fat and cholesterol diet (HFD), WT mice rapidly gained weight, whereas AEG-1KO mice did not gain weight at all. This phenotype of AEG-1KO mice is due to decreased fat absorption from the intestines, not because of decreased fat synthesis or increased fat consumption. AEG-1 interacts with retinoid X receptor (RXR) and inhibits RXR function. In enterocytes of AEG-1KO mice, we observed increased activity of RXR heterodimer partners, liver X receptor and peroxisome proliferator-activated receptor-α, key inhibitors of intestinal fat absorption. Inhibition of fat absorption in AEG-1KO mice was further augmented when fed an HFD providing ligands to liver X receptor and peroxisome proliferator-activated receptor-α. Our studies reveal a novel role of AEG-1 in regulating nuclear receptors controlling lipid metabolism. AEG-1 may significantly modulate the effects of HFD and thereby function as a unique determinant of obesity.

Collaboration


Dive into the Frank Corwin's collaboration.

Top Co-Authors

Avatar

Panos P. Fatouros

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunying Shu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Broaddus

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunru Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge