Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Delvigne is active.

Publication


Featured researches published by Frank Delvigne.


Biotechnology Journal | 2014

Microbial heterogeneity affects bioprocess robustness: Dynamic single‐cell analysis contributes to understanding of microbial populations

Frank Delvigne; Philippe Goffin

Heterogeneity or segregation of microbial populations has been the subject of much research, but the real impact of this phenomenon on bioprocesses remains poorly understood. The main reason for this lack of knowledge is the difficulty in monitoring microbial population heterogeneity under dynamic process conditions. The main concepts resulting in microbial population heterogeneity in the context of bioprocesses have been summarized by two distinct hypotheses. The first involves the individual history of microbial cells or the “path“ followed during their residence time inside the process equipment. The second hypothesis involves a coordinated response by the microbial population as a bet‐hedging strategy, in order to cope with process‐related stresses. The respective contribution of each hypothesis to microbial heterogeneity in bioprocesses is still unclear. This illustrates the fact that, although microbial phenotypic heterogeneity has been thoroughly investigated at a fundamental level, the implications of this phenomenon in the context of microbial bioprocesses are still subject to debate. At this time, automated flow cytometry is the best technique for investigating microbial heterogeneity under process conditions. However, dedicated software and relevant biomarkers are needed for the proper integration of flow cytometry as a bioprocess control tool.


Microbial Cell Factories | 2009

Bioreactor mixing efficiency modulates the activity of a prpoS::GFP reporter gene in E. coli

Frank Delvigne; Mathieu Boxus; Sophie Ingels; Philippe Thonart

BackgroundExtensive studies have shown that up-scaling of bioprocesses has a significant impact on the physiology of the microorganisms. Among the factors associated with the fluid dynamics of the bioreactor, concentration gradients induced by loss of the global mixing efficiency associated with the increasing scale is the main phenomena leading to strong physiological modifications at the level of the microbial population. These changes are not fully understood since they involve complex physiological mechanisms. In this work, we intend to investigate, at the single cell level, the expression of the rpoS gene associated with the stress response of E. coli. The cultures of the reporter strain have been performed in a small scale reactor as well as in a series of scaled-down bioreactors able to induce extracellular perturbations with increasing level of magnitude.ResultsThe rpoS level has been monitored by the aim of a transcriptional reporter gene based on the synthesis of the green fluorescent protein (GFP). It has been observed that the level of GFP increases during the transition from batch to fed-batch phase. After this initial increase, the GFP content of the cell drops, primarily due to the dilution by cell division. However, a significant drop of the GFP content has been observed if using a partitioned bioreactor, for which the mixing conditions are very bad, leading to the exposure of the cells to cyclic and stochastic extracellular fluctuations. If considering the flow cytometric profile of the cell to cell GFP content, this drop has to be attributed to the appearance of segregation at the level of the GFP content among the microbial population.ConclusionThe generation of extracellular perturbations (in the present case, at the level of the sugar concentration and the dissolved oxygen level) has led to a drop at the level of the rpoS expression level. This drop has to be attributed to a segregation phenomenon in microbial population, with a major sub-population exhibiting a low expression level and a minor sub-population keeping its initial elevated expression level. The intensity of the segregation, as well as its time of appearance during the culture can be related to the bioreactor mixing efficiency.


Trends in Biotechnology | 2014

Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity

Frank Delvigne; Quentin Zune; Alvaro R. Lara; Waleed Abu Al-Soud; Søren J. Sørensen

Phenotypic heterogeneity is a major issue in the context of industrial bioprocessing. Stochasticity of gene expression is usually considered to be the main source of heterogeneity among microbial population, but recent evidence demonstrates that metabolic reactions can also be subject to stochasticity without any intervention of gene expression. Although metabolic heterogeneity can be encountered in laboratory-scale cultivation devices, stochasticity at the level of metabolic reactions is perturbed directly by microenvironmental heterogeneities occurring in large-scale bioreactors. Accordingly, analytical tools are needed for the determination of metabolic variability in bioprocessing conditions and for the efficient design of metabolic engineering strategies. In this context, implementation of single cell technologies for bioprocess monitoring would benefit from knowledge acquired in more fundamental studies.


Microbial Cell Factories | 2013

A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors

Alison Brognaux; Shanshan Han; Søren J. Sørensen; Frédéric Lebeau; Philippe Thonart; Frank Delvigne

BackgroundMicrobial cell population heterogeneity is now recognized as a major source of issues in the development and optimization of bioprocesses. Even if single cell technologies are available for the study of microbial population heterogeneity, only a few of these methods are available in order to study the dynamics of segregation directly in bioreactors. In this context, specific interfaces have been developed in order to connect a flow cytometer directly to a bioreactor for automated analyses. In this work, we propose a simplified version of such an interface and demonstrate its usefulness for multiplexed experiments.ResultsA low-cost automated flow cytometer has been used in order to monitor the synthesis of a destabilized Green Fluorescent Protein (GFP) under the regulation of the fis promoter and propidium iodide (PI) uptake. The results obtained showed that the dynamics of GFP synthesis are complex and can be attributed to a complex set of biological parameters, i.e. on the one hand the release of protein into the extracellular medium and its uptake modifying the activity of the fis promoter, and on the other hand the stability of the GFP molecule itself, which can be attributed to the protease content and energy status of the cells. In this respect, multiplexed experiments have shown a correlation between heat shock and ATP content and the stability of the reporter molecule.ConclusionThis work demonstrates that a simplified version of on-line FC can be used at the process level or in a multiplexed version to investigate the dynamics of complex physiological mechanisms. In this respect, the determination of new on-line parameters derived from automated FC is of primary importance in order to fully integrate the power of FC in dedicated feedback control loops.


Journal of Industrial Microbiology & Biotechnology | 2008

Investigation of the effect of different extracellular factors on the lipase production by Yarrowia lipolityca on the basis of a scale-down approach

Tambi Kar; Frank Delvigne; M. Masson; Jacqueline Destain; Philippe Thonart

The influence of three extracellular factors (namely, the methyl oleate dispersion in the broth, the dissolved oxygen variations, and the pH fluctuation) on the lipase production by Y. lipolytica in batch bioreactor has been investigated in different scale-down apparatus. These systems allow to reproduce the hydrodynamic phenomena encountered in large-scale equipments for the three specified factors. The effects of the extracellular factors have been observed at three distinct levels: the microbial growth, the extracellular lipase production, and the induction of the gene LIP2 encoding for the main lipase of Y. lipolytica. Among the set of environmental factors investigated, the dissolved oxygen fluctuations generated in a controlled scale-down reactor (C-SDR) have led to the more pronounced physiological effect by decreasing the LIP2 gene expression level. The other environmental factors observed in a partitioned scale-down reactor, i.e., the methyl oleate dispersion and the pH fluctuations, have led to a less severe stress traduced only by a decrease of the microbial yield and thus of the extracellular lipase specific production rate.


Bioresource Technology | 2016

New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste

Cédric Tarayre; Lies De Clercq; Raphaëlle Charlier; Evi Michels; Erik Meers; Miller Camargo-Valero; Frank Delvigne

Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design.


Molecular Nutrition & Food Research | 2013

Microbial characterization of probiotics--advisory report of the Working Group "8651 Probiotics" of the Belgian Superior Health Council (SHC).

Geert Huys; Nadine Botteldoorn; Frank Delvigne; Luc De Vuyst; Marc Heyndrickx; Bruno Pot; Jean-Jacques Dubois; Georges Daube

When ingested in sufficient numbers, probiotics are expected to confer one or more proven health benefits on the consumer. Theoretically, the effectiveness of a probiotic food product is the sum of its microbial quality and its functional potential. Whereas the latter may vary much with the body (target) site, delivery mode, human target population, and health benefit envisaged microbial assessment of the probiotic product quality is more straightforward. The range of stakeholders that need to be informed on probiotic quality assessments is extremely broad, including academics, food and biotherapeutic industries, healthcare professionals, competent authorities, consumers, and professional press. In view of the rapidly expanding knowledge on this subject, the Belgian Superior Health Council installed Working Group “8651 Probiotics” to review the state of knowledge regarding the methodologies that make it possible to characterize strains and products with purported probiotic activity. This advisory report covers three main steps in the microbial quality assessment process, i.e. (i) correct species identification and strain-specific typing of bacterial and yeast strains used in probiotic applications, (ii) safety assessment of probiotic strains used for human consumption, and (iii) quality of the final probiotic product in terms of its microbial composition, concentration, stability, authenticity, and labeling.


Biotechnology Journal | 2011

Green fluorescent protein (GFP) leakage from microbial biosensors provides useful information for the evaluation of the scale-down effect

Frank Delvigne; Alison Brognaux; Frédéric Francis; Jean-Claude Twizere; Nathalie Gorret; Søren J. Sørensen; Philippe Thonart

Mixing deficiencies can be potentially detected by the use of a dedicated whole cell microbial biosensor. In this work, a csiE promoter induced under carbon-limited conditions was involved in the elaboration of such biosensor. The cisE biosensor exhibited interesting response after up and down-shift of the dilution rate in chemostat mode. Glucose limitation was accompanied by green fluorescent protein (GFP) leakage to the extracellular medium. In order to test the responsiveness of microbial biosensors to substrate fluctuations in large-scale, a scale-down reactor (SDR) experiment was performed. The glucose fluctuations were characterized at the single cell level and tend to decrease the induction of GFP. Simulations run on the basis of a stochastic hydrodynamic model have shown the variability and the frequencies at which biosensors are exposed to glucose gradient in the SDR. GFP leakage was observed to a great extent in the case of a culture operated in well-mixed fed-batch mode, by comparison with those operated in SDR. GFP leakage seems to be correlated to a higher membrane permeability, confirming previous studies highlighting a better cell viability in cultures operated in a fluctuating environment. Our results suggest that GFP leakage could be used in parallel to the normal GFP biosensor function in order to assess microbial viability in process conditions.


Biotechnology Progress | 2006

Stochastic models to study the impact of mixing on a fed-batch culture of Saccharomyces cerevisiae

Frank Delvigne; Annick Lejeune; Jacqueline Destain; Philippe Thonart

The mechanisms of interaction between microorganisms and their environment in a stirred bioreactor can be modeled by a stochastic approach. The procedure comprises two submodels: a classical stochastic model for the microbial cell circulation and a Markov chain model for the concentration gradient calculus. The advantage lies in the fact that the core of each submodel, i.e., the transition matrix (which contains the probabilities to shift from a perfectly mixed compartment to another in the bioreactor representation), is identical for the two cases. That means that both the particle circulation and fluid mixing process can be analyzed by use of the same modeling basis. This assumption has been validated by performing inert tracer (NaCl) and stained yeast cells dispersion experiments that have shown good agreement with simulation results. The stochastic model has been used to define a characteristic concentration profile experienced by the microorganisms during a fermentation test performed in a scale‐down reactor. The concentration profiles obtained in this way can explain the scale‐down effect in the case of a Saccharomyces cerevisiae fed‐batch process. The simulation results are analyzed in order to give some explanations about the effect of the substrate fluctuation dynamics on S. cerevisiae.


Bioresource Technology | 2015

Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach.

Romain Kinet; Jacqueline Destain; Serge Hiligsmann; Philippe Thonart; Laurent Delhalle; Bernard Taminiau; Georges Daube; Frank Delvigne

A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas production, was observed for the cultures inoculated with the exogenous consortium. Metagenomics analyses pointed out a weak richness (related to the number of OTUs) of the exogenous consortium induced by the selective pressure (cellulose as sole carbon source) met during the initial isolation steps. Main microbial strains determined were strictly anaerobic and belong to the Clostridia class. During cellulose anaerobic degradation, pH drop induced a strong modification of the microbial population. Despite the fact that richness and evenness were very weak, the exogenous consortium was able to adapt and to maintain the cellulolytic degradation potential. This important result point out the fact that simplified microbial communities could be used in order to increase the robustness of mixed cultures involved in environmental biotechnology.

Collaboration


Dive into the Frank Delvigne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge