Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Desiere is active.

Publication


Featured researches published by Frank Desiere.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract

Mark Alan Schell; Maria Karmirantzou; Berend Snel; David Vilanova; Bernard Berger; Gabriella Pessi; Marie-Camille Zwahlen; Frank Desiere; Peer Bork; Michele Delley; R. David Pridmore; Fabrizio Arigoni

Bifidobacteria are Gram-positive prokaryotes that naturally colonize the human gastrointestinal tract (GIT) and vagina. Although not numerically dominant in the complex intestinal microflora, they are considered as key commensals that promote a healthy GIT. We determined the 2.26-Mb genome sequence of an infant-derived strain of Bifidobacterium longum, and identified 1,730 possible coding sequences organized in a 60%–GC circular chromosome. Bioinformatic analysis revealed several physiological traits that could partially explain the successful adaptation of this bacteria to the colon. An unexpectedly large number of the predicted proteins appeared to be specialized for catabolism of a variety of oligosaccharides, some possibly released by rare or novel glycosyl hydrolases acting on “nondigestible” plant polymers or host-derived glycoproteins and glycoconjugates. This ability to scavenge from a large variety of nutrients likely contributes to the competitiveness and persistence of bifidobacteria in the colon. Many genes for oligosaccharide metabolism were found in self-regulated modules that appear to have arisen in part from gene duplication or horizontal acquisition. Complete pathways for all amino acids, nucleotides, and some key vitamins were identified; however, routes for Asp and Cys were atypical. More importantly, genome analysis provided insights into the reciprocal interactions of bifidobacteria with their hosts. We identified polypeptides that showed homology to most major proteins needed for production of glycoprotein-binding fimbriae, structures that could possibly be important for adhesion and persistence in the GIT. We also found a eukaryotic-type serine protease inhibitor (serpin) possibly involved in the reported immunomodulatory activity of bifidobacteria.


Nucleic Acids Research | 2006

The PeptideAtlas project

Frank Desiere; Eric W. Deutsch; Nichole L. King; Alexey I. Nesvizhskii; Parag Mallick; Jimmy K. Eng; Sharon S. Chen; James S. Eddes; Sandra N. Loevenich; Ruedi Aebersold

The completion of the sequencing of the human genome and the concurrent, rapid development of high-throughput proteomic methods have resulted in an increasing need for automated approaches to archive proteomic data in a repository that enables the exchange of data among researchers and also accurate integration with genomic data. PeptideAtlas () addresses these needs by identifying peptides by tandem mass spectrometry (MS/MS), statistically validating those identifications and then mapping identified sequences to the genomes of eukaryotic organisms. A meaningful comparison of data across different experiments generated by different groups using different types of instruments is enabled by the implementation of a uniform analytic process. This uniform statistical validation ensures a consistent and high-quality set of peptide and protein identifications. The raw data from many diverse proteomic experiments are made available in the associated PeptideAtlas repository in several formats. Here we present a summary of our process and details about the Human, Drosophila and Yeast PeptideAtlas builds.


Molecular Microbiology | 2001

Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages.

Harald Brüssow; Frank Desiere

Comparative phage genomics can retrace part of the evolutionary history of phage modules encoding phage‐specific functions such as capsid building or establishment of the lysogenic state. The diagnosis of relatedness is not based exclusively on sequence similarity, but includes topological considerations of genome organization. The gene maps from the λ‐, ψM2‐, L5‐, Sfi21‐, Sfi11‐, φC31‐, sk1‐ and TM4‐like phages showed a remarkable synteny of their structural genes defining a λ supergroup within Siphoviridae (Caudovirales with long non‐contractile tails). A hierarchy of relatedness within the λ supergroup suggested elements of vertical evolution in the capsid module of Siphoviridae. Links to P22‐like Podoviridae and P2‐like Myoviridae were also detected. Numerous cases of horizontal gene transfer were observed, but recent transfers were limited to interbreeding phage populations. We suggest that tailed phages are the result of both vertical and horizontal evolution and are thus a good model system for web‐like phylogenies.


Genome Biology | 2005

Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry

Frank Desiere; Eric W. Deutsch; Alexey I. Nesvizhskii; Parag Mallick; Nichole L. King; Jimmy K. Eng; Alan Aderem; Rose Boyle; Erich Brunner; Samuel Donohoe; Nelson Fausto; Ernst Hafen; Lee Hood; Michael G. Katze; Kathleen A. Kennedy; Floyd Kregenow; Hookeun Lee; Biaoyang Lin; Daniel B. Martin; Jeffrey A. Ranish; David J Rawlings; Lawrence E. Samelson; Yuzuru Shiio; Julian D. Watts; Bernd Wollscheid; Michael E. Wright; Wei Yan; Lihong Yang; Eugene C. Yi; Hui Zhang

A crucial aim upon the completion of the human genome is the verification and functional annotation of all predicted genes and their protein products. Here we describe the mapping of peptides derived from accurate interpretations of protein tandem mass spectrometry (MS) data to eukaryotic genomes and the generation of an expandable resource for integration of data from many diverse proteomics experiments. Furthermore, we demonstrate that peptide identifications obtained from high-throughput proteomics can be integrated on a large scale with the human genome. This resource could serve as an expandable repository for MS-derived proteome information.


Journal of Bacteriology | 2002

The Dilemma of Phage Taxonomy Illustrated by Comparative Genomics of Sfi21-Like Siphoviridae in Lactic Acid Bacteria

Caroline Proux; Douwe van Sinderen; Juan E. Suárez; Pilar García; Victor Ladero; Gerald F. Fitzgerald; Frank Desiere; Harald Brüssow

The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Comparative genomics of phages and prophages in lactic acid bacteria

Frank Desiere; Sacha Lucchini; Carlos Canchaya; Marco Ventura; Harald Brüssow

Comparative phage genomics has become possible due to the availability of more than 100 complete phage genome sequences and the development of powerful bioinformatics tools. This technology, profiting from classical molecular-biology knowledge, has opened avenues of research for topics, which were difficult to address in the past. Now, it is possible to retrace part of the evolutionary history of phage modules by comparative genomics. The diagnosis of relatedness is hereby not uniquely based on sequence similarity alone, but includes topological considerations of genome organization. Detailed transcription maps have allowed in silico predictions of genome organization to be verified and refined. This comparative knowledge is providing the basis for a new taxonomic classification concept for bacteriophages infecting low G+C-content Gram-positive bacteria based on the genetic organization of the structural gene module. An Sfi21-like and an Sfil 1-like genus of Siphoviridae is proposed. The gene maps of many phages show remarkable synteny in their structural genes defining a lambda super-group within Siphoviridae. A hierarchy of relatedness within the lambda super-group suggests elements of vertical evolution in Siphoviridae. Tailed phages are the result of both vertical and horizontal evolution and are thus fascinating objects for the study of molecular evolution. Prophage sequences integrated into the genomes of their bacterial host present theoretical challenges for evolutionary biologists. Prophages represent up to 10% of the genome in some LAB. In pathogenic streptococci prophages confer genes of selective value for the lysogenic cell. The lysogenic conversion genes are located between the lysin gene and the right phage attachment site. Non-attributed genes were found at the same genome position of prophages from lactic streptococci. These genes belong to the few prophage genes transcribed in the lysogen. Prophages from dairy bacteria might therefore also contribute to the evolutionary fitness of non-pathogenic LAB.


Virus Genes | 1998

Molecular Ecology and Evolution of Streptococcus thermophilus Bacteriophages—a Review

Harald Brüssow; Anne Bruttin; Frank Desiere; Sacha Lucchini; Sophie Foley

Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk fermentation, are a threat to the dairy industry. These small isometric-headed phages possess double-stranded DNA genomes of 31 to 45 kb. Yoghurt-derived phages exhibit a limited degree of variability, as defined by restriction pattern and host range, while a large diversity of phage types have been isolated from cheese factories. Despite this diversity all S. thermophilus phages, virulent and temperate, belong to a single DNA homology group. Several mechanisms appear to create genetic variability in this phage group. Site-specific deletions, one type possibly mediated by a viral recombinase/integrase, which transformed a temperate into a virulent phage, were observed. Recombination as a result of superinfection of a lysogenic host has been reported. Comparative DNA sequencing identified up to 10% sequence diversity due to point mutations. Genome sequencing of the prototype temperate phage φSfi21 revealed many predicted proteins which showed homology with phages from Lactococcus lactis suggesting horizontal gene transfer. Homology with phages from evolutionary unrelated bacteria like E. coli (e.g. lambdoid phage 434 and P1) and Mycobacterium φL5 was also found. Due to their industrial importance, the existence of large phage collections, and the whole phage genome sequencing projects which are currently underway, the S. thermophilus phages may present an interesting experimental system to study bacteriophage evolution.


Genome Biology | 2006

Analysis of the Saccharomyces cerevisiae proteome with PeptideAtlas

Nichole L. King; Eric W. Deutsch; Jeffrey A. Ranish; Alexey I. Nesvizhskii; James S. Eddes; Parag Mallick; Jimmy K. Eng; Frank Desiere; Mark R. Flory; Daniel B. Martin; Bong Kim; Hookeun Lee; Brian Raught; Ruedi Aebersold

We present the Saccharomyces cerevisiae PeptideAtlas composed from 47 diverse experiments and 4.9 million tandem mass spectra. The observed peptides align to 61% of Saccharomyces Genome Database (SGD) open reading frames (ORFs), 49% of the uncharacterized SGD ORFs, 54% of S. cerevisiae ORFs with a Gene Ontology annotation of molecular function unknown, and 76% of ORFs with Gene names. We highlight the use of this resource for data mining, construction of high quality lists for targeted proteomics, validation of proteins, and software development.


Biotechnology annual review | 2004

Towards a systems biology understanding of human health: interplay between genotype, environment and nutrition.

Frank Desiere

Sequencing of the human genome has opened the door to the most exciting new era for the holistic system description of human health. It is now possible to study the underlying mechanisms of human health in relation to diet and other environmental factors such as drugs and toxic pollutants. Technological advances make it feasible to envisage that in the future personalized drug treatment and dietary advice and possibly tailored food products can be used for promoting optimal health on an individual basis, in relation to genotype and lifestyle. Life-Science research has in the past very much focused on diseases and how to reestablish human health after illness. Today, the role of food and nutrition in human health and especially prevention of illness is gaining recognition. Diseases of modern civilization, such as diabetes, heart disease and cancer have been shown to be effected by dietary patterns. The risk of disease is often associated with genetic polymorphisms, but the effect is dependent on dietary intake and nutritional status. To understand the link between diet and health, nutritional-research must cover a broad range of areas, from the molecular level to whole body studies. Therefore it provides an excellent example of integrative biology requiring a systems biology approach. The current state and implications of systems biology in the understanding of human health are reviewed. It becomes clear that a complete mechanistic description of the human organism is not yet possible. However, recent advances in systems biology provide a trajectory for future research in order to improve health of individuals and populations. Disease prevention through personalized nutrition will become more important as the obvious avenue of research in life sciences and more focus will need to be put upon those natural ways of disease prevention. In particular, the new discipline of nutrigenomics, which investigates how nutrients interact with humans, taking predetermined genetic factors into account, will mediate new insights into human health that will finally have significant positive impact on our quality of life.


Trends in Food Science and Technology | 2001

Bioinformatics and data knowledge: the new frontiers for nutrition and foods

Frank Desiere; Bruce German; Heribert Watzke; Andrea Pfeifer; Sam Saguy

The recent publication of the Human Genome poses the question: how will genome technologies influence food development? Food products will be very different within the decade with considerable new values added as a result of the biological and chemical data that bioinformatics is rapidly converting to usable knowledge. Bioinformatics will provide details of the molecular basis of human health. The immediate benefits of this information will be to extend our understanding of the role of food in the health and well-being of consumers. In the future, bioinformatics will impact foods at a more profound level, defining the physical, structural and biological properties of food commodities leading to new crops, processes and foods with greater quality in all aspects. Bioinformatics will improve the toxicological assessment of foods making them even safer. Eventually, bioinformatics will extend the already existing trend of personalized choice in the food marketplace to enable consumers to match their food product choices with their own personal health. To build this new knowledge and to take full advantage of these tools there is a need for a paradigm shift in assessing, collecting and sharing databases, in developing new integrative models of biological structure and function, in standardized experimental methods, in data integration and storage, and in analytical and visualization tools.

Collaboration


Dive into the Frank Desiere's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimmy K. Eng

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge