Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Grützner is active.

Publication


Featured researches published by Frank Grützner.


Nature | 2011

The evolution of gene expression levels in mammalian organs

David Brawand; Magali Soumillon; Anamaria Necsulea; Philippe Julien; Gábor Csárdi; Patrick Harrigan; Manuela Weier; Angélica Liechti; Ayinuer Aximu-Petri; Martin Kircher; Frank W. Albert; Ulrich Zeller; Philipp Khaitovich; Frank Grützner; Sven Bergmann; Rasmus Nielsen; Svante Pääbo; Henrik Kaessmann

Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.


Nature | 2014

The evolution of lncRNA repertoires and expression patterns in tetrapods

Anamaria Necsulea; Magali Soumillon; Maria Warnefors; Angélica Liechti; Tasman Daish; Ulrich Zeller; Julie C. Baker; Frank Grützner; Henrik Kaessmann

Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.


Genome Research | 2008

Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes

Frédéric Veyrunes; Paul D. Waters; Pat Miethke; Willem Rens; Daniel McMillan; Amber E. Alsop; Frank Grützner; Janine E. Deakin; Camilla M. Whittington; Kyriena Schatzkamer; Colin Kremitzki; Tina Graves; Malcolm A. Ferguson-Smith; Wes Warren; Jennifer A. Marshall Graves

In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.


Nature | 2004

In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes

Frank Grützner; Willem Rens; Enkhjargal Tsend-Ayush; Nisrine El-Mogharbel; Patricia C. M. O'Brien; Russell C. Jones; Malcolm A. Ferguson-Smith; Jennifer A. Marshall Graves

Two centuries after the duck-billed platypus was discovered, monotreme chromosome systems remain deeply puzzling. Karyotypes of males, or of both sexes, were claimed to contain several unpaired chromosomes (including the X chromosome) that form a multi-chromosomal chain at meiosis. Such meiotic chains exist in plants and insects but are rare in vertebrates. How the platypus chromosome system works to determine sex and produce balanced gametes has been controversial for decades. Here we demonstrate that platypus have five male-specific chromosomes (Y chromosomes) and five chromosomes present in one copy in males and two copies in females (X chromosomes). These ten chromosomes form a multivalent chain at male meiosis, adopting an alternating pattern to segregate into XXXXX-bearing and YYYYY-bearing sperm. Which, if any, of these sex chromosomes bears one or more sex-determining genes remains unknown. The largest X chromosome, with homology to the human X chromosome, lies at one end of the chain, and a chromosome with homology to the bird Z chromosome lies near the other end. This suggests an evolutionary link between mammal and bird sex chromosome systems, which were previously thought to have evolved independently.


Nature | 2014

Origins and functional evolution of Y chromosomes across mammals

Diego Cortez; Ray Marin; Deborah Toledo-Flores; Laure Froidevaux; Angélica Liechti; Paul D. Waters; Frank Grützner; Henrik Kaessmann

Y chromosomes underlie sex determination in mammals, but their repeat-rich nature has hampered sequencing and associated evolutionary studies. Here we trace Y evolution across 15 representative mammals on the basis of high-throughput genome and transcriptome sequencing. We uncover three independent sex chromosome originations in mammals and birds (the outgroup). The original placental and marsupial (therian) Y, containing the sex-determining gene SRY, emerged in the therian ancestor approximately 180 million years ago, in parallel with the first of five monotreme Y chromosomes, carrying the probable sex-determining gene AMH. The avian W chromosome arose approximately 140 million years ago in the bird ancestor. The small Y/W gene repertoires, enriched in regulatory functions, were rapidly defined following stratification (recombination arrest) and erosion events and have remained considerably stable. Despite expression decreases in therians, Y/W genes show notable conservation of proto-sex chromosome expression patterns, although various Y genes evolved testis-specificities through differential regulatory decay. Thus, although some genes evolved novel functions through spatial/temporal expression shifts, most Y genes probably endured, at least initially, because of dosage constraints.


Cytogenetic and Genome Research | 2000

Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination

I Nanda; Enchshargal Zend-Ajusch; Zhihong Shan; Frank Grützner; Manfred Schartl; Dave Burt; M Koehler; Velia M. Fowler; G Goodwin; W J Schneider; Shigeki Mizuno; G Dechant; Thomas Haaf; M Schmid

Sex-determination mechanisms in birds and mammals evolved independently for more than 300 million years. Unlike mammals, sex determination in birds operates through a ZZ/ZW sex chromosome system, in which the female is the heterogametic sex. However, the molecular mechanism remains to be elucidated. Comparative gene mapping revealed that several genes on human chromosome 9 (HSA 9) have homologs on the chicken Z chromosome (GGA Z), indicating the common ancestry of large parts of GGA Z and HSA 9. Based on chromosome homology maps, we isolated a Z-linked chicken ortholog of DMRT1, which has been implicated in XY sex reversal in humans. Its location on the avian Z and within the sex-reversal region on HSA 9p suggests that DMRT1 represents an ancestral dosage-sensitive gene for vertebrate sex-determination. Z dosage may be crucial for male sexual differentiation/determination in birds.


eLife | 2013

Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates

Hannah K. Long; David Sims; Andreas Heger; Neil P. Blackledge; Claudia Kutter; Megan L. Wright; Frank Grützner; Duncan T. Odom; Roger Patient; Chris P. Ponting; Robert J. Klose

Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI: http://dx.doi.org/10.7554/eLife.00348.001


PLOS Biology | 2012

Mechanisms and evolutionary patterns of mammalian and avian dosage compensation.

Philippe Julien; David Brawand; Magali Soumillon; Anamaria Necsulea; Angélica Liechti; Frédéric Schütz; Tasman Daish; Frank Grützner; Henrik Kaessmann

A large-scale comparative gene expression study reveals the different ways in which the chromosome-wide gene dosage reductions resulting from sex chromosome differentiation events were compensated during mammalian and avian evolution.


Genome Biology | 2007

The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z

Willem Rens; Patricia C. M. O'Brien; Frank Grützner; Oliver Clarke; Daria Graphodatskaya; Enkhjargal Tsend-Ayush; Vladimir A. Trifonov; He Skelton; Mary Wallis; Steve Johnston; Frédéric Veyrunes; Jennifer A. Marshall Graves; Malcolm A. Ferguson-Smith

BackgroundSex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.ResultsChromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.ConclusionMonotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.


Cell Reports | 2015

Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy

Vincent J. Lynch; Mauris C. Nnamani; Aurélie Kapusta; Kathryn J. Brayer; Silvia Plaza; Erik C. Mazur; Deena Emera; Shehzad Z. Sheikh; Frank Grützner; Stefan Bauersachs; Alexander Graf; Steven L. Young; Jason D. Lieb; Francesco J. DeMayo; Cédric Feschotte; Günter P. Wagner

SUMMARY A major challenge in biology is determining how evolutionarily novel characters originate; however, mechanistic explanations for the origin of new characters are almost completely unknown. The evolution of pregnancy is an excellent system in which to study the origin of novelties because mammals preserve stages in the transition from egg laying to live birth. To determine the molecular bases of this transition, we characterized the pregnant/gravid uterine transcriptome from tetrapods to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including genes that mediate maternal-fetal communication and immunotolerance. Furthermore, thousands of cis-regulatory elements that mediate decidualization and cell-type identity in decidualized stromal cells are derived from ancient mammalian transposable elements (TEs). Our results indicate that one of the defining mammalian novelties evolved from DNA sequences derived from ancient mammalian TEs coopted into hormone-responsive regulatory elements distributed throughout the genome.

Collaboration


Dive into the Frank Grützner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willem Rens

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Ly Lim

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber E. Alsop

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge